
Hardware-Accelerated High-Quality Filtering on PC Hardware

Markus Hadwiger
�

Thomas Theußl
�

Helwig Hauser
�

Eduard Gröller
�

�
VRVis Research Center

�
Institute of Computer Graphics and Algorithms

Donau-City-Strasse 1, 1220 Vienna, Austria Vienna University of Technology
Karlsplatz 13/186, 1030 Vienna, Austria

Abstract

We describe a method for exploiting commodity
3D graphics hardware in order to achieve hardware-
accelerated high-quality filtering with arbitrary fil-
ter kernels. Our approach is based on reordering
the evaluation of the filter convolution sum to ac-
commodate the way the hardware works. We ex-
ploit multiple rendering passes together with the ca-
pability of current graphics hardware to index into
several textures at the same time (multi-texturing).
The method we present is applicable in one, two,
and three dimensions. The cases we have been most
interested in up to now are two-dimensional recon-
struction of object-aligned slices through volumet-
ric data, and three-dimensional reconstruction of ar-
bitrarily oriented slices. As a fundamental build-
ing block, the basic algorithm can be used in order
to directly render an entire volume by blending a
stack of slices reconstructed with high quality on
top of each other. However, it is important to em-
phasize that our approach has no fundamental re-
strictions with regard to the filters that can be em-
ployed. Thus, it could also be used for more general
filtering tasks than reconstruction, e.g., image pro-
cessing.

1 Introduction

A fundamental problem in computer graphics is
how to reconstruct images and volumes from sam-
pled data. The process of determining the origi-
nal continuous data – or at least a sufficiently ac-
curate approximation – from discrete input data is
usually called function or signal reconstruction. In
volume visualization, the input data is commonly
given at evenly spaced discrete locations in three-

� �
Hadwiger, Hauser � @VRVis.at, http://www.VRVis.at/vis/� �
theussl, groeller � @cg.tuwien.ac.at, www.cg.tuwien.ac.at

space. In theory, the original volumetric data can be
reconstructed entirely, provided certain conditions
are honored (cf. sampling theorem [13]). In reality,
of course, reconstruction is always a trade-off be-
tween performance and quality. This is especially
true for hardware implementations. Reconstruction
in graphics hardware is usually done by using sim-
ple linear interpolation. This is fast, but introduces
significant reconstruction artifacts. On the other
hand, a lot of research in the last few years has
been devoted to improving reconstruction by using
high-order reconstruction filters [6, 10, 11, 12, 15].
Among the investigated filters are piecewise cubic
functions, as well as windowed ideal reconstruction
functions (windowed sinc filters). However, these
filters were usually deemed to be too slow to be used
in practice.

In this paper, we will show how to exploit con-
sumer 3D graphics hardware for accelerating high-
order reconstruction of volumetric data. The pre-
sented approach works in one, two, and three di-
mensions, respectively. Up to now, we have used
our method for reconstruction of images and slices
in two dimensions, and reconstruction of oblique
slices through volumetric data. An interesting ap-
plication of such slices is to use them for direct vol-
ume rendering. Standard texture mapping hardware
can be exploited for volume rendering by blend-
ing a stack of texture-mapped slices on top of each
other [1]. These slices can be either viewport-
aligned, which requires 3D texture mapping hard-
ware [7, 17], or object-aligned, where 2D texture
mapping hardware suffices [14]. Our high-quality
filtering approach can be used to considerably im-
prove reconstruction quality of the individual slices
in both of these cases, thus increasing the quality of
the entire rendered volume.

As reconstruction kernels we have used bicubic
and tricubic B-splines and Catmull-Rom splines,

VMV 2001 Stuttgart, Germany, November 21–23, 2001

as well as windowed sinc filters using Kaiser and
Blackman windows.

The structure of the paper is as follows. After dis-
cussing related work in section 2, we describe our
method for hardware-accelerated high-order filter-
ing in section 3. Section 4 presents results, and sec-
tion 5 summarizes what we have presented, tries to
draw some general conclusions, and wraps up with
future work.

2 Related work

There is a vast amount of literature on filter analy-
sis and design. Keys [5] derived a family of cardinal
splines for function reconstruction, and showed, us-
ing a Taylor series expansion, that among these the
Catmull-Rom spline is numerically most accurate.
Mitchell and Netravali [9] derived another family
of cubic splines quite popular in computer graphics,
the BC-splines. Marschner and Lobb [6] compared
linear interpolation, cubic splines, and windowed
sincs. They concluded that linear interpolation is
certainly the cheapest option and will likely remain
the method of choice for time critical applications.
Cubic splines perform quite well, especially those
BC-splines that fulfill � �
 � � � which include
the Catmull-Rom spline. Windowed sincs can pro-
vide arbitrarily good reconstruction, while being
much more expensive. Möller et al. [10] provide
a general framework for analyzing filters in spa-
tial domain again using a Taylor series expansion
of the convolution sum. They use this framework
to analyze the cardinal splines [10], affirming that
the Catmull-Rom splines are numerically most ac-
curate, and the BC-splines [11], affirming that the
filters with parameters fulfilling � �
 � � � are
numerically most accurate. Since numerical con-
siderations alone may not always be appropriate,
they also show how to use their framework to de-
sign accurate and smooth reconstruction filters [12].
Turkowsky [16] used windowed ideal reconstruc-
tion filters for image resampling tasks. Theußl et
al. [15] used the framework developed by Möller
et al. [10] to assess the quality of windowed recon-
struction filters and to derive optimal values for the
parameters of Kaiser and Gaussian windows.

The idea of using a reordered evaluation of the
filter convolution sum that is employed by our
approach is also used in all splatting-based tech-
niques [18]. However, apart from this basic simi-

larity our method performs reconstruction in a way
that is significantly different from splatting, e.g., we
are not rendering kernel footprints.

Meißner et al. [8] have done a thorough com-
parison of the four prevalent approaches to vol-
ume rendering, one of them being the use of tex-
ture mapping hardware. Hardware-accelerated tex-
ture mapping has been used to accelerate volume
rendering for quite some time. 3D textures can
be used effectively for rendering volumes at inter-
active frame rates, as shown by Cabral et al. [1],
and Cullip and Neumann [2], for example. These
early approaches all stored a preshaded volume in
a 3D texture, which had to be recomputed when-
ever the viewing parameters, lighting conditions, or
transfer function were changed. Westermann and
Ertl [17] introduced several approaches how to ac-
celerate volume rendering with graphics hardware
that is capable of three-dimensional texture map-
ping and supports a color matrix. They were able
to render monochrome images of shaded isosur-
faces at interactive rates – without explicitly ex-
tracting any geometry – and performed shading on-
the-fly, without requiring the volume texture to be
updated. Meißner et al. [7] have extended this ap-
proach for semi-transparent volume rendering, and
are able to apply both classification and colored
shading at run-time without changing the volume
texture itself. Dachille et al. [3] used a mixed-mode
approach between applying a transfer function and
shading in software, and rendering the resulting tex-
ture volume in hardware. Many of the approaches
presented earlier have been adapted to standard PC
graphics hardware later on, e.g., by Rezk-Salama
et al. [14]. They are only using two-dimensional
textures instead of three-dimensional ones, exploit-
ing the multi-texturing and multi-stage rasteriza-
tion capabilites of NVIDIA GeForce graphics cards.
The high-quality filtering approach we are propos-
ing can be used in conjunction with many of the
methods previously described.

The OpenGL imaging subset (introduced in
OpenGL 1.2) offers convolution capabilities, but
these are primarily intended for image processing
and unfortunately cannot be used for the kind of
reconstruction we desire. That is, these features
cannot be used for reconstructing a signal at arbi-
trary locations. Hopf and Ertl [4] have shown how
to achieve 3D convolution by building upon two-
dimensional convolution in OpenGL.

106

filter kernel

resampling point

input samples
output sample

x

x

+
+

input samples

resampling points

(a) (b)

Figure 1: Gathering vs. distribution of input sample contributions (tent filter): (a) Gathering all contribu-
tions to a single output sample (b) Distributing a single input sample’s contribution.

3 Hardware-Accelerated High-Order
Filtering

This section presents our approach for filtering in-
put data by convolving it with an arbitrary filter
kernel stored in multiple texture maps, exploiting
low-cost 3D graphics hardware. The basic prin-
ciple is most easily illustrated in the case of one-
dimensional input data (sections 3.1 and 3.2), and
can also be applied in two (section 3.3), as well as
three dimensions (sections 3.4 and 3.5).

3.1 Basic principle

Since we want to be able to employ arbitrary filter
kernels for reconstruction, we have to evaluate the
well-known filter convolution sum:

� � � � � � � � ! � � � � �
$ % ' (*+

, - $ % ' / * (1
� 3 5 6 ! � � 9 5 � (1)

This equation describes a convolution of the dis-
crete input samples � 3 5 6 with a continuous recon-
struction filter ! � � � . If the function to be recon-
structed was band-limited and sampled properly, us-
ing the sinc function as reconstruction filter would
result in perfect reconstruction. However, the sinc
function is impracticable because of its infinite ex-
tent. Therefore, in practice finite approximations to
the sinc filter are used, which yield results of vary-
ing quality. In equation 1, the (finite) half-width of
the filter kernel is denoted by = .

In order to be able to exploit standard graphics
hardware for performing this computation, we do
not use the evaluation order usually employed, i.e.,

in software-based filtering. The convolution sum is
commonly evaluated in its entirety for a single out-
put sample at a time. That is, all the contributions of
neighboring input samples (their values multiplied
by the corresponding filter values) are gathered and
added up in order to calculate the final value of a
certain output sample. This “gathering” of contri-
butions is illustrated in figure 1(a). This figure uses
a simple tent filter as an example. It shows how
a single output sample is calculated by adding up
two contributions. The first contribution is gathered
from the neighboring input sample on the left-hand
side, and the second one is gathered from the input
sample on the right-hand side. In the case of this
example, the convolution results in linear interpola-
tion, due to the tent filter employed. For generating
the desired output data in its entirety, this is done for
all corresponding resampling points (output sample
locations).

Our method uses a different evaluation order. In-
stead of focusing on a single output sample at any
one time, we calculate the contribution of a single
input sample to all corresponding output sample lo-
cations (resampling points) first. That is, we dis-
tribute the contribution of an input sample to its
neighboring output samples, instead of the other
way around. This “distribution” of contributions is
shown in figure 1(b). In this case, the final value
of a single output sample is only available when all
corresponding contributions of input samples have
been distributed to it.

We evaluate the convolution sum in the order out-
lined above, since the distribution of the contribu-
tions of a single relative input sample can be done
in hardware for all output samples (pixels) simulta-

107

neously. The final result is gradually built up over
multiple rendering passes. In the example of a one-
dimensional tent filter (like in figure 1), there are
two relative input sample locations. One could be
called the “left-hand neighbor,” the other the “right-
hand neighbor.” In the first pass, the contribution of
all respective left-hand neighbors is calculated. The
second pass then adds the contribution of all right-
hand neighbors. Note that the number of passes de-
pends on the filter kernel used, see also below.

Thus, the same part of the filter convolution sum
is added to the previous result for each pixel at the
same time, yielding the final result after all parts
have been added up. From this point of view, the
graph in figure 1(b) depicts both rendering passes
that are necessary for reconstruction with a one-
dimensional tent filter, but only with respect to the
contribution of a single input sample. The contri-
butions distributed simultaneously in a single pass
are depicted in figures 2 and 3, respectively. In the
first pass, shown in figure 2, the contributions of all
relative left-hand neighbors are distributed. Con-
sequently, the second pass, shown in figure 3, dis-
tributes the contributions of all relative right-hand
neighbors. Adding up the distributed contributions
of these two passes yields the final result for all
resampling points (i.e., linearly interpolated output
values in this example).

3.2 Accommodating graphics hardware

The rationale for the approach described in the
previous section is that, at the pixel or fragment
level, graphics hardware basically operates by ap-
plying simple, identical operations to a lot of pix-
els simultaneously—or at least in very rapid suc-
cession, which for all conceptual purposes can be
viewed as fully parallel operation from the outside.
Naturally, these operations have access to a very
limited number of inputs. However, in general fil-
tering based on a convolution of an input signal with
a filter kernel, a potentially unbounded number of
inputs needs to be available for the calculation of
a single output value. Therefore, in order to ex-
ploit graphics hardware and accommodate the way
it works, our method reorders the evaluation order
of the filter convolution sum.

Section 3.1 has already shown how we do this re-
ordering, and we are now going to describe in detail
how this basic principle can be employed in order to
achieve high-order reconstruction in hardware. The

input samples

resampling points

Figure 2: Distributing the contributions of all “left-
hand” neighbors; tent filter.

input samples

resampling points

Figure 3: Distributing the contributions of all
“right-hand” neighbors; tent filter.

following facts are crucial to the operation of our
method, and together form the reason why it works.
If we look at filtering and the convolution of an in-
put signal with a filter kernel at a single output sam-
ple location, we can observe that – even for a kernel
of arbitrary width – each segment from one integer
location of the kernel to the next is only relevant
for exactly one input sample. In the case of a tent
filter (which has width two) this can be seen in fig-
ure 1(a), by imagining the filter kernel sliding from
the second input sample shown to the third input
sample.

From now on we will be calling a filter segment
of width one from one integer location in a filter
kernel to the next a filter tile. Consequently, a one-
dimensional tent filter has two filter tiles, corre-
sponding to the fact that it has width two. Look-
ing again at figure 1(a), we can now say that each
filter tile covers exactly one input sample, regard-
less of where the kernel is actually positioned. If
we now imagine all output sample locations (resam-
pling points) between two given input samples si-
multaneously, instead of concentrating on a single

108

output sample, we can further observe that:
> this area has width one, which is exactly the

width of a single filter tile,
> all output samples in this area get a non-zero

contribution from each filter tile exactly once,
> as many input samples yield a non-zero contri-

bution as there are filter tiles in the filter kernel,
and

> this number is, as defined above, the width of
the filter kernel.

Now, instead of imagining the filter kernel being
centered at the “current” output sample location,
we note that an identical mapping of input sam-
ples to filter values can be achieved by replicating
a single filter tile mirrored in all dimensions (in the
case of more than one dimension) repeatedly over
the output sample grid, see figure 4. The scale of
this mapping is chosen so that the size of a single
tile corresponds to the width from one input sample
to the next. Note that the need for mirroring filter
tiles has nothing to do with the fact that a filter ker-
nel is usually mirrored in the filter convolution sum
(see equation 1). Mirroring is necessary to compen-
sate for the fact that, instead of “sliding” the filter
kernel, individual filter tiles are positioned at (and
replicated to) fixed locations. This becomes clear
when looking at one input sample location after the
other from left to right, together with the values in
a non-moving filter tile located above. For correct
correspondences the tile has to be mirrored. Fig-
ure 4 shows how this works in the case of a one-
dimensional cubic Catmull-Rom spline, which has
width four and thus consists of four filter tiles.

We calculate the contribution of a single specific
filter tile to all output samples in a single pass. The
input samples used in a single pass correspond to a
specific relative input sample location or offset with
regard to the output sample locations. That is, in
one pass the input samples with relative offset zero
are used for all output samples, then the samples
with offset one in the next pass, and so on. The
number of passes necessary is equal to the num-
ber of filter tiles the filter kernel used consists of.
Note that the subdivision of the filter kernel into its
tiles is crucial to our method and necessary in or-
der to attain a correct mapping between locations in
the input data and the filter kernel, and to achieve a
consistent evaluation order of passes everywhere.

We employ multi-texturing with (at least) two
textures and retrieve input samples from the first

pass 1

mirrored +

(nearest−neighbor interpolation)
shifted input samples (texture 0)

x

pass 3

pass 4

pass 2

1 2 3 4

3 4 52

0 1 2 3

3 4 5 6

filter tile (texture 1)

filter tile 1

filter tile 2

filter tile 0

filter tile 3

−

−

resampling points

input sample coordinates

Figure 4: Catmull-Rom spline of width four used
for reconstruction of a one-dimensional function in
four passes

texture, and filter kernel values from the second tex-
ture. Actually, due to the fact that only a single filter
tile is needed during a single rendering pass, all tiles
are stored and downloaded to the graphics hardware
as separate textures. The required replication of
tiles over the output sample grid is easily achieved
by configuring the hardware to automatically ex-
tend the texture domain beyond 3 ? @ � 6 B 3 ? @ � 6 by
simply repeating the texture. In order to fetch in-
put samples in unmodified form, nearest-neighbor
interpolation has to be used for the input texture.
The textures containing the filter tiles are sampled
using the hardware-native linear interpolation. If a
given hardware architecture is able to support � D
textures at the same time, the number of passes can
be reduced by D . That is, with two-texture multi-
texturing four passes are needed for filtering with a
cubic kernel in one dimension, whereas with four-
texture multi-texturing only two passes are needed,
etc. Our approach is not limited to symmetric fil-
ter kernels, although symmetry can be exploited in
order to save texture memory for the filter tile tex-
tures. It is also not limited to separable filter kernels
(in two and three dimensions, respectively). How-

109

Figure 5: Bicubic B-spline filter kernel; filter tiles
separated by white lines.

ever, some filter kernels, e.g., non-separable ones,
may need additional passes if they contain both pos-
itive and negative areas. In this case, every tile con-
taining both positive and negative values needs to be
split in two, correspondingly requiring two passes
instead of one.

Additionally, the algorithm is identical for or-
thogonal and perspective projections of the result-
ing images. Basically, we are reconstructing at sin-
gle locations in object space, which can be viewed
as happening before projection. Thus, we are in-
dependent from the projection used. Note that we
are not considering area-averaging filters, since we
are assuming that magnification is desired instead
of minification. This is in the vein of graphics hard-
ware using bilinear interpolation for magnification,
and other approaches, usually mip-mapping, to deal
with minification.

3.3 Reconstruction of object-aligned slices

The basic algorithm outlined in the previous sec-
tion for one dimension can easily be applied in two
dimensions. For each output pixel and pass, our
method takes two inputs. Unmodified (i.e., unfil-
tered) image values, and filter kernel values. That is,
two 2D textures are used simultaneously. One tex-
ture contains the entire source slice, and the other
texture contains the filter tile needed in the cur-
rent pass. Figure 5 shows an example of a two-
dimensional filter kernel texture. All sixteen tiles
are shown, where in reality only three tiles would
actually be downloaded to the hardware, exploiting
symmetry. In addition to using the appropriate fil-
ter tile, in each pass an appropriate offset has to be
applied to the texture coordinates of the texture con-
taining the input slice. As explained in the previous
section, each pass corresponds to a specific relative
location of an input sample. Thus, the slice texture

coordinates have to be offset and scaled in order to
match the point-sampled input image grid with the
grid of replicated filter tiles.

3.4 Reconstruction of oblique slices

When planar slices through 3D volumetric data
are allowed to be located and oriented arbitrar-
ily, three-dimensional filtering has to be performed
although the result is still two-dimensional. On
graphics hardware, this is usually done by trilin-
early interpolating within a 3D texture. Our method
can also be applied in this case in order to im-
prove reconstruction quality considerably. The con-
ceptually straightforward extension of the 2D ap-
proach described in the previous section, simultane-
ously using two 2D textures, achieves the equivalent
for three-dimensional reconstruction by simultane-
ously using two 3D textures. The first 3D texture
contains the input volume in its entirety, whereas
the second 3D texture contains the current filter tile.
In the case of a cubic filter kernel for tricubic filter-
ing, 64 passes need to be performed on two-texture
multi-texturing hardware. If such a kernel is sym-
metric, we download four 3D textures for the filter
tiles, reusing them for the remaining 60. Due to the
high memory consumption of 3D textures, it is es-
pecially important that the filter kernel need not be
downloaded to the graphics hardware in its entirety
if it is symmetric.

In addition to the application outlined in this sec-
tion, our method applied to three-dimensional re-
construction can also be used for high-quality filter-
ing of solid textures.

3.5 Volume rendering

Our technique can also be used for direct volume
rendering by using either one of the two major
approaches exploiting texture mapping hardware,
i.e., blending either viewport-aligned [17] or object-
aligned [14] slices on top of each other. Further-
more, our approach can also be used to reconstruct
gradients with high quality, in addition to recon-
structing density values. This is possible in com-
bination with hardware-accelerated methods that
store gradients in the RGB components of a tex-
ture [7, 17]. Note that it is usually necessary to read
back slices if multiple rendering passes are needed
for a single slice, in order to prevent reconstruction
of slices from interfering with each other.

110

Bicubic B-spline Bicubic Catmull-Rom Tricubic B-spline
kernel width 4 4 4
slice orientation object-aligned object-aligned oblique
number of passes 16 16 64
slice/volume resolution 256x256 256x256 128x128x128
render resolution 500x500 500x500 500x500
NVIDIA GeForce 2 [fps] 12.6 12.6 -
NVIDIA GeForce 3 (hq) [fps] 9.4 9.4 4.5
NVIDIA GeForce 3 (fast) [fps] - - 7.2
ATI Radeon [fps] 10.1 - 1.2

Table 1: Frame rates for different scenarios.

4 Results

In our work, we are focusing on widely avail-
able low-cost PC graphics hardware. Currently,
the two premier graphics accelerators in this field
are the NVIDIA GeForce 3 and the ATI Radeon.
The graphics API we are using is OpenGL. The
GeForce 3 supports multi-texturing with four 2D or
3D textures at the same time and offers the capabil-
ity to subtract from the contents of the frame buffer.
The Radeon supports up to three simultaneous 2D
textures, as well as one 3D plus one 2D texture at
the same time. Unfortunately, it does not allow to
subtract from the frame buffer which is necessary
for filter kernels containing negative values. As fil-
ter kernels we have used a cubic B-spline and a cu-
bic Catmull-Rom spline of width four. We have also
tested windowed sinc filter kernels with a Blackman
and a Kaiser window.

We have reconstructed object-aligned planar
slices on both a GeForce 2 and a GeForce 3, as
well as the Radeon. Figure 6 (colorplate) shows
slices reconstructed with different filters together
with magnified regions to highlight the differences.
The Blackman windowed sinc and Catmull-Rom
kernels can only be used on the GeForce, due to the
fact that the Radeon does not support frame buffer
subtraction. We have tested our approach for recon-
structing arbitrarily oriented slices on the Radeon
and the GeForce 3. On the Radeon we emulated the
missing second 3D texture in software, which pre-
vents interactive performance. On the GeForce 3
we were able to achieve frame rates up to eight fps.
On this platform we also implemented two different
approaches differing in performance and quality by
exploiting register combiners in different ways. Ta-

ble 1 shows some timing results of our test imple-
mentation. We have used a Pentium 3/733, 512MB
of RAM, with the three graphics cards described
above. Note that the timings do not depend on the
shape of the filter kernel per se, only on its width.

An important consideration in practice is that all
rendering algorithms employing multiple passes are
prone to artifacts due to limited frame buffer pre-
cision and range and thus special care has to be
taken to choose a pass ordering avoiding to exceed
the 3 ? @ � 6 range for intermediate results. Also, in
order to be able to allow negative values in filter
tiles it is necessary to store absolute values in the
corresponding textures and subtract from the frame
buffer instead of adding to it.

5 Conclusions and future work

We have presented a general approach for high-
quality filtering that is able to exploit hardware
acceleration for reconstruction with arbitrary fil-
ter kernels. Conceptually, the method is not con-
strained to a certain dimensionality of the data, or
the shape of the filter kernel. In practice, limit-
ing factors are the number of rendering passes and
the precision of the frame buffer. Our method is
quite general and can be used for a lot of appli-
cations. With regard to volume visualization, the
reconstruction of object-aligned, as well as oblique
slices through volumetric data is especially interest-
ing. Reconstruction of slices can also be used for di-
rect volume rendering. We are exploiting commod-
ity graphics hardware, multi-texturing, and multi-
ple rendering passes. The number of passes is a
major factor determining the resulting performance.
Therefore, future hardware that supports high num-

111

bers of textures at the same time – not only 2D tex-
tures, but also 3D textures – will make the applica-
tion of our method more feasible for real-time visu-
alization, even if many slices need to be rendered.
In the future we would like to experiment with ad-
ditional filter kernels and apply our approach to a
slice-based volume renderer, as well as image pro-
cessing.

Please see http://www.VRVis.at/vis/research/hq-
hw-reco/ for high-resolution images and the most
up-to-date information on this ongoing work.

6 Acknowledgments

Parts of this work have been carried out as part
of the basic research on visualization at the VRVis
Research Center (http://www.VRVis.at/vis/), which
is funded in part by an Austrian research program
called Kplus.

References

[1] B. Cabral, N. Cam, and J. Foran. Acceler-
ated volume rendering and tomographic re-
construction using texture mapping hardware.
In Proc. of IEEE Symposium on Volume Visu-
alization, pages 91–98, 1994.

[2] T. J. Cullip and U. Neumann. Accelerating
volume reconstruction with 3D texture map-
ping hardware. Technical Report TR93-027,
Department of Computer Science, University
of North Carolina, Chapel Hill, 1993.

[3] F. Dachille, K. Kreeger, B. Chen, I. Bittner,
and A. Kaufman. High-quality volume render-
ing using texture mapping hardware. In Proc.
of Eurographics/SIGGRAPH Graphics Hard-
ware Workshop 1998, 1998.

[4] M. Hopf and T. Ertl. Accelerating 3D con-
volution using graphics hardware. In Proc. of
IEEE Vis ’99, pages 471–474, 1999.

[5] R. G. Keys. Cubic convolution interpolation
for digital image processing. IEEE Trans.
Acoustics, Speech, and Signal Processing,
ASSP-29(6):1153–1160, December 1981.

[6] S. R. Marschner and R. J. Lobb. An evalua-
tion of reconstruction filters for volume ren-
dering. In Proc. of IEEE Vis ’94, pages 100–
107, 1994.

[7] M. Meißner, U. Hoffmann, and W. Straßer.
Enabling classification and shading for 3D

texture mapping based volume rendering. In
Proc. of IEEE Vis ’99, pages 207–214, 1999.

[8] M. Meißner, J. Huang, D. Bartz, K. Müller,
and R. Crawfis. A practical evaluation of four
popular volume rendering algorithms. In Proc.
of IEEE Symposium on Volume Visualization,
pages 81–90, 2000.

[9] D. P. Mitchell and A. N. Netravali. Recon-
struction filters in computer graphics. In Proc.
of SIGGRAPH ’88, pages 221–228, 1988.

[10] T. Möller, R. Machiraju, K. Müller, and
R. Yagel. Classification and local error esti-
mation of interpolation and derivative filters
for volume rendering. In Proc. of IEEE Sym-
posium on Volume Visualization, pages 71–78,
1996.

[11] T. Möller, R. Machiraju, K. Müller, and
R. Yagel. Evaluation and Design of Filters Us-
ing a Taylor Series Expansion. IEEE Transac-
tions on Visualization and Computer Graph-
ics, 3(2):184–199, 1997.

[12] T. Möller, K. Müller, Y. Kurzion, Raghu
Machiraju, and Roni Yagel. Design of accu-
rate and smooth filters for function and deriva-
tive reconstruction. In Proc. of IEEE Sympo-
sium on Volume Visualization, pages 143–151,
1998.

[13] A. V. Oppenheim and R. W. Schafer. Digital
Signal Processing. Prentice Hall, Englewood
Cliffs, 1975.

[14] C. Rezk-Salama, K. Engel, M. Bauer,
G. Greiner, and T. Ertl. Interactive volume
rendering on standard PC graphics hardware
using multi-textures and multi-stage rasteriza-
tion. In Proc. of Eurographics/SIGGRAPH
Graphics Hardware Workshop 2000, 2000.

[15] T. Theußl, H. Hauser, and M. E. Gröller. Mas-
tering windows: Improving reconstruction. In
Proc. of IEEE Symposium on Volume Visual-
ization, pages 101–108, 2000.

[16] K. Turkowski. Filters for common resampling
tasks. In A. Glassner, editor, Graphics Gems
I, pages 147–165. Academic Press, 1990.

[17] R. Westermann and T. Ertl. Efficiently using
graphics hardware in volume rendering appli-
cations. In Proc. of SIGGRAPH ’98, pages
169–178, 1998.

[18] L. Westover. Footprint evaluation for volume
rendering. In Proc. of SIGGRAPH ‘90, pages
367–376, 1990.

112

520

(a)

(b)

(c)

(d)

Figure 6: Slice from MR data set, reconstructed using different filters (right images show marked area of
left image enlarged): (a) Bilinear filter; (b) Blackman windowed sinc; (c) Bicubic Catmull-Rom spline; (d)
Bicubic B-spline (smoothing filter).

M. Hadwiger et al.: Hardware-Accelerated High-Quality Filtering on PC Hardware (p. 105)

520

