
Visual Image Query

Krešimir Matković
VRVis Research Center in

Vienna, Austria,
Matkovic@VRVis

László Neumann
Maros u. 36

H-1122 Budapest, Hungary
lneumann@cg.tuwien.ac.at

Johannes Siglaer
Institute for Design and

Assessment of Technology,
TU Vienna, Austria

jsiglaer@pop.tuwien.ac.at

Martin Kompast
Institute for Design and

Assessment of Technology,
TU Vienna, Austria

mkompast@pop.tuwien.ac.at

Werner Purgathofer
Institute of Computer Graphics

and Algorithms,
TU Vienna, Austria

wp@cg.tuwien.ac.at

ABSTRACT
The explosion of storage media size and bandwidth has led to huge
image databases. Methods are needed to find a particular image
based on a crude description by the user. Keywording is not only
tedious, but also subjective and therefore often incorrect. Avail-
able visual query systems have different properties, and are mostly
based on some image transformation. An alternative visual query
system is introduced, which finds an image similar to a user drawn
sketch, or to any other reference image. A descriptor is created
for each image in the database, and for the query image. Descrip-
tors are compared in order to find the best matches. Descriptors
are computed by inserting a limited number of quasi-random rect-
angles in the image, and computing the average colors of the rect-
angles. Furthermore, a reduced color histogram is computed and
stored in the descriptor. The difference between descriptors is cal-
culated as the weighted average of CIE LUV differences between
corresponding rectangles. Using the Contrast Sensitivity Function
this average is adapted to the users perception. The metric used
for comparing images operates in the original image space, which
makes the whole algorithm intuitive and easy to understand, and
enables the comparison of images sections, as well.

Keywords
Image Retrieval, Color Layout Query, Digital Image Matching, Hu-
man Perception

1. INTRODUCTION
The amount of electronic images an average user is confronted

with has exploded in the last decade. This trend seems to continue
with further bandwidth and storage media size expansion. As a re-
sult of such an explosion huge image databases are quite common
today. Unfortunately, as the size of the image database grows, the
time required to find an image increases as well. When some crit-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to distribute to lists, requires prior specific
permission and/or fee.
Int. Symp. on Smart Graphics, June 11-13, 2002, Hawthorne, NY, USA.
Copyright 2002 ACM 1-58113-555-6/02/0600...$5.00

ical number of images is reached, it is no longer possible to find
a specific image fast, by using thumbnail view only. Of course, it
is possible to describe images using lists of keywords, but it seems
that there are just a few of us willing to type keywords for each
scanned or downloaded image. Furthermore assigning keywords
is not only tedious, but the description via textual attributes is not
very objective. Another way to find a specific image or a group of
similar pictures in a large database consists in using a visual query
system. Such a system tries to find an image similar to an image
that is drawn by the user, or that is supplied in some other way
(existing image, low-quality scan...) An ideal system would be ca-
pable of finding a particular item, e.g. a company logo, or a human
face, in a large database of arbitrary images. There is a lot more of
research to be done before such a system is constructed.

Existing systems can find an image with similar color-layout, or
can recognize a person if predefined constraints are met. So a per-
son can only be identified if the image shows a portrait of the person
and is compared within a database of portraits, and not of arbitrar-
ily images. There are a lot of image query systems, either commer-
cially available or still in research phase. Only the best known will
be mentioned here, and Eakins et al.[4] give an excellent overview
of almost all existing methods.

Probably the most well known systems are: QBIC[5] developed
at IBM, VIR Image engine[1] from Virage, Inc. and Photobook
Project[16] developed in the MIT Media Lab. Another work well
known in the computer graphics community is Multi resolution Im-
age Querying by Jacobs et al.[10]. This method was the first intro-
duced to the community, and yields impressive results. Since our
basic approach is similar to theirs, the differences to their method
will be stressed out more explicitly.

A new visual image query method is introduced. It is simple to
implement and simple to understand, and gives satisfactory results.
This simplicity is the main strength of our method.

The main idea is to create image descriptors in a preprocess-
ing phase, to store them in a database, and to use them for the
query. When the user requests a query, a descriptor is computed
for the new query image, and it is compared to the descriptors in
the database. The results are sorted, and the best matches are shown
to the user. That’s exactly the same as Jacobs et al.[10] do. What
makes our method different is the way how the descriptors are cre-
ated, and the metric that is used in comparing the query with the
target images. Our work relies strongly on the metric proposed by
Neumann et al.[15]. We will not describe it in detail, due to space
limitations, and the interested reader should have a look at the orig-

116

inal paper.
The simplest solution would be to use the mean square error

method to compare the query image with the target images. Al-
though simple, this approach does not yield satisfactory results.
In order to achieve better results, some aspects of human vision
should be taken into account. Girod[7] has nicely described what’s
wrong with the mean square error. Adding, e.g. just a little offset
to each pixel results in a relatively large error, although our vi-
sual system would consider these two images as almost the same.
On the other hand, changing just a small area in the image signifi-
cantly, would not be represented accordingly to our judgment. Just
as many researchers before[17, 6, 10, 3] we used the Contrast Sen-
sitivity Function, as proposed by Mannos et al.[11], as the dominant
vision phenomena when developing our system.

The main idea is to decompose the images using a series of dif-
ferent sized rectangles. Sizes and positions of rectangles are dis-
tributed semi-randomly, just as described in Neumann et al.[15]
Jacobs et al., on the other hand, use wavelets to decompose images.
Once rectangles are placed in the image, the average color of ev-
ery rectangle is computed, and the difference to the corresponding
rectangle in a target image is computed. Differences are weighted
according to the Contrast Sensitivity Function, because our visual
system is not equally sensitive to differences at various spatial fre-
quencies.

Two more mechanisms were added, which makes the method
different from the query introduced by Jacobs et al.[10]. An impor-
tant feature of the human visual system is that we are poor color
estimators. There are people having so called absolute pitch who
can estimate the sound frequency exactly, but there is no human
possessing an ability to estimate color wavelength exactly. We can
not remember colors exactly and therefore we cannot reproduce
them later exactly either. In order to reduce errors caused by re-
membering a wrong color, we reduce colors in target and query
images. The user is allowed to use only “basic” colors for sketch-
ing the image. Finally, we use a reduced histogram as an additional
criterion in our query. The histogram is built on the reduced color
set (actually the originally reduced color set is reduced once more),
containing only nine main colors (like red, blue, ...). This reduction
minimizes the error caused by not remembering exact colors even
more.

Let us explain the Contrast Sensitivity Function, and the whole
algorithm in some more detail.

2. CONTRAST SENSITIVITY FUNCTION
As already stated, contrast sensitivity will be one of the main

human vision characteristics that is used in our metric. The model
of Contrast Sensitivity Function introduced by Mannos and Sakri-
son[11] will be used. The Contrast Sensitivity Function tells us
how sensitive we are to the various frequencies of visual stimuli. If
the frequency of visual stimuli is too high we will not be able to rec-
ognize the stimuli pattern any more. Imagine an image consisting
of vertical black and white stripes. If the stripes are very thin (i.e.
a few thousand per millimeter) we will be unable to see individual
stripes. All that we will see is a gray image. If the stripes then
become wider and wider, there is a threshold width, from which
on we are able to distinguish the stripes. The contrast sensitivity
function proposed by Manos and Sakrison is

A(f) = 2.6 · (0.0192 + 0.114 · f) · e−(0.114·f)1.1
(1)

f in equation 1 is the spatial frequency of the visual stimuli given
in cycles/degree. The function has a peak of value1 approximately
at f = 8.0 cycles/degree, and it is meaningless for frequencies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Frequency [cycles/degree]

C
S

F
 v

al
ue

Figure 1: Contrast sensitivity function

above60 cycles/degree. Figure 1 shows the contrast sensitivity
functionA(f).

Since we use only image space, frequencies should be converted
from cycles/degree to pixels/degree. We will use an assumption
that a pixel pair corresponds to a cycle throughout this paper.

3. MAIN IDEA
The main idea of the visual image query algorithm is to create

descriptors for target images, to save them, and then to create a de-
scriptor for the query image, and compare it with saved descriptors.
How are descriptors created?

The color depth of the image is reduced first. This is necessary to
reduce errors caused by the inability to reproduce colors faithfully.
After the color depth is reduced a limited number of rectangles of
various sizes is placed in an image, the average color of each rect-
angle in CIE XYZ color space is computed, and finally converted
to CIE LUV color coordinates. The series of LUV coordinates is
part of the descriptor of an image.

Furthermore, a reduced histogram, containing only a small num-
ber of bins, is computed for the image, and saved in the descriptor
as well. This histogram will be used to improve the query.

When the query image descriptor is compared with the target im-
age descriptor, color differences are computed for each rectangle,
using the CIE LUV color difference formula. These differences
will be weighted according to the rectangle size using the contrast
sensitivity function. In this way the differences that are more vis-
ible to us will be weighted stronger, and they will contribute more
to the final distance. CIE LUV space was chosen as it is percep-
tually more uniform than CIE XYZ. For details about color spaces
and conversions see[18, 9]. If there is some noise in the image,
it will automatically be neglected by using the contrast sensitivity
function, unless it is visible and influences our vision significantly.
Actually, more visible differences will contribute to the error more
significantly.

As the number of all possible rectangles of various sizes in an
image is very large we use only a subset of all rectangles. The posi-
tions and orientations of the rectangles are chosen quasi randomly,
which makes the whole process deterministic.

3.1 Algorithm Details

3.1.1 Descriptor Generation
The first step in descriptor generation is the reduction of image

size and color depth. Images are reduced to 128x128 pixel images.

117

In this way we do not need as many rectangles to cover the image as
if it would have original size, and all images will be of the same size
which assures that a particular rectangle represents the same area in
all images. Of course, fine details are lost, but they are anyhow not
of large interest in a query system. The next step is color reduction.
The colors are reduced to a relatively small set of predefined colors.
This set represents the whole color gamut, and consists of colors
which we would remember more easily, or of colors we would be
using in describing an image to someone. Actually, drawing the
sketch is nothing else than describing the image, like saying there
was a light red car in the front of medium yellow house.

In order to divide the color gamut in such a way, a color space
that is perceptually uniform (or close to it), and intuitive is needed.
The Coloroid color space [12, 13, 14], possesses both of these char-
acteristics. It is perceptually uniform (note that there is no totally
uniform color space, but there are only better or worse approxi-
mations of it), and has the advantage that a color can be described
using three intuitive parameters (lightness, saturation and hue). It
can be easily converted to CIE XYZ coordinates. We have chosen
8 basic hues: yellow, orange, red, magenta, violet, blue, cyan - cold
green, and warm green. There are five lightness-saturation steps per
hue. Beside these basic colors there are five neutral (gray) colors as
well. A segmentation of the whole color gamut allows to classify
every color as belonging to one of the selected representatives.

After having defined the reduced colors and having reduced the
image size, the next step is the reduction of the color depth. This
will be done using a slightly different approach than simply finding
the closest color. The first step in selecting corresponding color to
the original color is estimating its hue. Once, the hue is estimated
(there are 9 possibilities, 8 colors + 1 gray), the nearest color from
the available hue subset is chosen using the CIE LUV color dif-
ference formula. Finally the corresponding colors are converted to
CIE XYZ coordinates in order to compute the average colors in the
next step using a linear color space. Figure 2 shows an example of
an original and a reduced color image.

The next step in descriptor computation is placing the rectangles
in the image. A large number of rectangles will be needed, and
the average color of each rectangle should be computed. In order
to compute the average colors of rectangles fast summed area ta-
bles[2] are used. A separate table is built for each of the three CIE
XYZ color components. That makes three tables, each containing a
number of entries equal to the total number of pixels in the image.
ElementT (i, j) of the tableT (see fig. 3) contains the sum of val-
ues of all pixelsX(x, y) such thatx ≤ i andy ≤ j. The average
of the rectangle defined with points(k, l) and(i, j) such thatk ≤ i
andl ≤ j is then:

A =
T (i, j)− T (k − 1, j)− T (i, l − 1) + T (k − 1, l − 1)

(i− k + 1) · (j − l + 1)
(2)

Now, only the position and size of the rectangle must be given to
compute the average with only a few operations.

The weighting of the particular rectangles according to the con-
trast sensitivity function is done implicitly using importance sam-
pling for chosing the size of the rectangle. The integral of the con-
trast sensitivity functiong(f) =

∫ f

0+ A(x) ·dx is precomputed and
normalized by dividing all values withg(60) (see fig. 4).

Randomly sampling over the domain of the inverse ofg(f) pro-
duces a frequency distribution as desired, so that no additional weights
are necessary to get a distribution proportional toA(f) (see bottom
line in fig. 4).

The idea is to select the position on the y axis quasi-randomly,
doing so, the metric has some meaning during the computation pro-

Figure 2: Original and reduced color image

cess as well. Once the size of a rectangle is determined, the orien-
tation, i.e. longer and shorter side size, should be determined. The
size of the rectangle corresponds to the rectangle’s diagonal, and
the maximum allowed ratio of the longer to the shorter side of the
rectangle is the golden section ratio (φ = 1.618034 . . .)[15]. The
orientation of the rectangle is determined by choosing the angle
between the diagonal and the horizontal axis. This angle is in the
range[βmin, βmax] (see fig. 5) and a particular angle is chosen
quasi randomly. When the size and the orientation of the rectangle
are known, the position of the rectangle can be determined. The
rectangle position in the image is also determined by quasi random
determination of its lower left corner. The position domain for this
procedure is reduced, such that the complete rectangle lies within
the image.

The Halton sequence[8] is used to compute quasi-random num-
bers for this4−dimensional quasi random problem.

The Halton sequence for the N-dimensional pointxm is defined
as:

xm = (φ2(m), φ3(m), ..., φpN−1(m), φpN (m)) (3)

wherepi refers to theith prime number, and the functionφr(m)
is the radical-inverse function ofm to the baser. The value of the
radical-inverse functionφr(m) is obtained by simply reflecting the
digits of m written in baser around the decimal point. Therefore
if m is:

m = a0 · r0 + a1 · r1 + ... + an · rn (4)

118

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

(i,l)

(i,j)(k,j)

(k,l)

(0,0)

Figure 3: Summed area table

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Frequency [cycles/degree]

C
S

F
 v

al
ue

Figure 4: Contrast sensitivity function and its integral

the radical inverse functionφr(m) is:

φr(m) = a0 · r−1 + a1 · r−2 + ... + an · r−(n+1) (5)

As our problem is4−dimensional we need theφ2, φ3, φ5 andφ7

functions. The size will be chosen usingφ2, the orientation using
φ3 and the position in the image usingφ5 andφ7.

The rectangles are placed in the image, the average color is com-
puted and 1000 (the number of rectangles) L,u,v triplets make the
descriptor of an image.

As stated above, a reduced histogram is calculated as well, in
order to improve the query. To make this control mechanism sim-
ple and fast, the histogram will consist only of the main hue bins,
meaning there will be only one histogram bin for variations hav-
ing the same hue. This makes 8 color bins, plus the gray bin. The
reduced histogram consisting of nine values, is stored in the de-
scriptor as well.

3.1.2 Image Query
In a preprocessing phase the descriptors for all images of the

database are generated and stored in a database. When starting the
actual image query the descriptor database has to be loaded first and
after that the user sketches or loads an image, and the descriptor for
the sketch is computed. The 1000 rectangles of the query image
descriptor are compared to the rectangles of every target descriptor,
and the average difference is computed. Since descriptors represent
CIE LUV colors, CIE LUV difference formulae will be used to
compare two rectangles.

β
βmin

max

1

φ
�

Figure 5: Possible orientations of the rectangles

The query can be additionally steered by using a so called his-
togram check. This check is an additional filter, which excludes
images from the result list, which have an incompatible color his-
togram. It is assumed that certain basic features, like the existence
of a bright color spot, are mandatory for an image to be a result
candidate. In this way the set of potential result images is reduced
largely. E.g., if the user has drawn an orange area on a blue back-
ground, all images containing blue but no orange can be considered
as bad guesses, although the actual difference in the two metrics
may be relatively small. In order to allow some tolerance the neigh-
boring bins in the target histograms will also be taken into consid-
eration. Meaning, when comparing a histogram bin from a query
image with the corresponding target histogram bin, the neighbor-
ing bins in the target histogram are added to the original bin. By
doing so, if the user draws an orange spot it will be checked if
there are orange, yellow or red spots in the target image. For each
histogram bin which is not zero in the user supplied image, corre-
sponding bins in the database images histograms will be checked.
If the database image bin has significantly less entries, the image is
considered to be a bad guess. The threshold for relative bin differ-
ence can be set by the user, and our experience shows it is OK to
use a threshold level of 20%, i.e. checking if the number of entries
in the target image histogram bin is less than 20% of entries in the
query histogram bin. In order to reduce the error when the user
draws a red area, and there was e.g. an orange area in the image,
the neighboring bins will be taken into account. When a red bin is
compared, it is actually being compared with the weighted sum of
orange, red and magenta bins in the target image. The user can set
the weight of the neighboring bins between0.0 and1.0. Note that
this check is done only in one way. It is checked if target images
contain query colors, but it is not checked if the query image con-
tains target images colors. The user will often remember only few
most significant colors, and the image will contain some additional
colors as well.

Let us make it clearer using an example. Lets assume that the
user remembers an image of an orange fish in the sea. Of course
the user is not able to reproduce the image exactly, so he/she draws
a sketch containing a blue background and an orange “fish”. The
query is started without the histogram check. Results are shown in
figure 6. The user used a different blue color, and since there were
some blue images in the database, closer blues are ranked better,
than our “fish” image. If there were more blue images, “fish” could
be ranked even worse. Now, the histogram check is included. Note,
that a lot of blue images have no orange histogram component, and
the user has used some orange, so all images containing no orange
can be considered as not wanted. The result of the query, with

119

Figure 6: Histogram check disabled

histogram check is shown in figure 7. The “fish” image is a clear
winner now.

An additional feature is implemented, too. If the user remembers
only that there was a specific color layout in a part of the image,
the user can limit the search to any rectangular area. Since the
whole algorithm works in the original space, the implementation is
straightforward.

4. ALGORITHM SUMMARY
Let us summarize the algorithm now. The integration of the Con-

trast Sensitivity Function can be precomputed and stored in an ar-
ray. The descriptor database should be computed as next. There
are lots of images, and a descriptor musts be computed for each
of them. The image is resized to a predefined size first (e.g. 128
x 128). Color depth is reduced, and the r, g, b values are trans-
formed to CIE XYZ values. Summed area tables are built for X,
Y, and Z color components. The Halton series can be precomputed
or easily computed on the fly. The size of a rectangle is deter-
mined, its orientation and position in the image. Average X, Y,
and Z of the rectangles are computed using (2) and colors are con-
verted to CIE LUV color space. These CIE LUV values represent
the first part of a descriptor. The reduced histogram can be com-
puted during color conversion, and it represents the second part of
the descriptors. When all descriptors are computed, the descriptor
database can be saved. It is always possible to add new images to
the database.

The actual query starts with the database load. Next, the user
supplies a query image to the system either by drawing a sketch, or
selecting an existing image. Now the descriptor is computed for the
supplied image, and the average differences of the query descriptor
to all target descriptors are computed. Target images are sorted
according to the difference, and the images are shown to the user.
Additionally a histogram check is done to remove very unlikely
results.

The whole process can be accelerated by checking the histograms
first, and then computing the differences only if the histogram check
did not fail. Another possibility to speed up the process is to limit
the search only to the best, e.g. 100, matches. When the average
difference of the last image in the top 100 group is known, any

Figure 7: Histogram check enabled

further query that exceeds this limit before all 1000 rectangles are
checked, does not need to be processed further. The total difference
can not be smaller, since there are no negative differences.

5. RESULTS
The query was implemented in C++ on a standard Windows2000

computer. Time needed to search through the database of 3549
images was app. 2.9 seconds on a PentiumIII 650MHz machine.
The search was applied to the whole database always, without using
the speedup possibilities described above.

After several tries the user understands how the query works,
and results are just as expected. It can be used to find images with
similar color layout as the proposed image, helping in finding the
wanted image. The histogram check improves the query signifi-
cantly, and it was almost never disabled in our experiments. Be-
sides for finding an image which the user remembers the system
can be used to find images with a desired color appearance, e.g.
uniform or any other pattern.

Results of our query are shown in figures 8 to 12. In the first
example we were trying to find a sunset image. With the histogram
check enabled, the query was really successful. Figure 9 shows
another example, where an existing image was used as query image
in order to find similar images. Finally figure 10 shows the result
of trying to find blue images. A search with limited area, where
we are looking for images with yellow middle part is illustrated in
figures 11 and 12.

All these figures are actual screen-shots from our tool. The 20
best ranked images are displayed, and the next screen can be dis-
played on demand, and so on. The user can create the descriptors
database using this tool as well. Weighting factors for neighboring
bins in histogram check, and histogram check threshold can be set
as well. A simple dialog shown in figure 12 which can be used to
produce quick sketches is a part of the tool, too.

6. CONCLUSION AND FUTURE WORK
We have presented an alternative visual image query system. The

idea is related to that proposed by Jacobs et al.[10], but it differs
in the metric used, and in two additional help mechanisms: color

120

Figure 8: Searching for a sunset

reduction and the histogram check. The metric used is similar to
the metric proposed by Neumann et al.[15]. This type of image
query is not able to find images containing a specific pattern, e.g.
black and white stripes, or containing a particular sub image e.g. a
company logo, at an unknown position in the image.

The method is appropriate to find an image similar to the user
drawn sketch, or any other image supplied to the system. The his-
togram check improves the query significantly.

The whole process is done in the original image space (there is
no need to transform images using Fourier, wavelet or any other
transform), which makes the whole method intuitive, and easy to
understand.

We do not know if the use of another color system for color re-
duction would improve the query, or the color system chosen does
not influence the query significantly. Furthermore, it is possible
that some more advanced histogram check algorithm would im-
prove the query further, but it would make it certainly less intuitive
and harder to understand.

7. ACKNOWLEDGEMENTS
The Authors would like to thank Ina Wagner for her helpful com-

ments and support. This work was partly sponsored by the Desarte
- Esprit LTR Project NO 31870. The authors thank the Imagination
company from Vienna, as well. Parts of this work were carried out

in the scope of applied research at the VRVis Research Center in
Vienna (http://www.VRVis.at/), Austria, which is funded
by an Austrian governmental research program called K plus.

8. REFERENCES
[1] Gupta A. The virage image search engine: an open

framework for image management. InStorage and Retrieval
for Image and Video Databases IV, volume 2670 ofSPIE
proceedings series, pages 76–87, 1996.

[2] F. C. Crow. Summed-Area Table for Texture Mapping.
Computer Graphics (Proceedings of Siggraph ’84),
18(3):207–212, July 1984.

[3] S. Daly. The visible difference predictor: An algorithm for
the assessment of image fidelity. In A. B. Watson, editor,
Digital Images and Human Vision, pages 179–206. MIT
Press, 1993.

[4] J. P. Eakins and M. E. Graham. Content-based image
retrieval, a report to the jisc technology applications
programme, www.unn.ac.uk/iidr/research/cbir/report.html,
1999.

[5] M. Flickner, H. Sawhney, W. Niblack, J. Sahley, Q. Hiang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steel, and P. Yanker. Query by image and video content:
the qbic system.IEEE Computer, 28(9):23–32, 1995.

121

Figure 9: Existing image as query image

[6] Ajeetkumar Gaddipatti, Raghu Machiraju, and Roni Yagel.
Steering image generation with wawelet based perceptual
metric.Computer Graphics Forum(Proceedings of
Eurographics ’97), 16(3):241–251, September 1997.

[7] B. Girod. What’s wrong with mean-squared error? In A. B.
Watson, editor,Digital Images and Human Vision, pages
207–220. MIT Press, 1993.

[8] Andrew S. Glasner.Principles of Digital Image Synthesis.
Morgan Kaufmann, 1995.

[9] R. W. G. Hunt.Measuring Color. Ellis Horwood, 2nd
edition, 1992.

[10] Charles E. Jacobs, Adam Finkelstein, and David H. Salesin.
Fast multiresolution image querying.Computer Graphics
(Proceedings of Siggraph ’95), 29(Annual Conference
Series):277–286, November 1995.

[11] J. L. Mannos and D. J. Sakrison. The effects of a visual
fidelity criterion on the encoding of images.IEEE
Transactions on Information Theory, 20(4):525–535, 1974.

[12] A. Nemcsics. Coloroid color system.Color Research and
Application, 5:113–120, 1980.

[13] A. Nemcsics. Color space of the coloroid color system.
Color Research and Application, 12:135–146, 1987.

[14] A. Nemcsics. Colour dynamics, 1993.
[15] Lászĺo Neumann, Krěsimir Matkov́c, and Werner

Purgathofer. Perception based color image difference.
Computer Graphics Forum(Proceedings of Eurographics
’98), 17(3):233–241, September 1998.

[16] A. Pentland, R. Picard, and S. Sclaroff. Photobook: tools for
content-based manipulation of image databases.
International Journal of Computer Vision, 18(3):233–254,
1996.

[17] H. Rushmeier, G. Ward, C. Piatko, P. Sanders, and B. Rust.
Comparing real and synthetic images: Some ideas about
metrics. In P. M. Hanrahan and W. Purgathofer, editors,
Rendering Techniques ’95 (Proceedings of the Eurographics
Workshop), pages 82–91. Springer Verlag, Vienna, 1995.

[18] G. Wyszecki and W. S. Stiles.Color Science, Concept and
Methods, Quantitive Data and Formulae. John Wiley and
Sons, 2nd edition, 1992.

122

Figure 11: Limited area query

Figure 10: Blue images 1 to 20 Figure 12: Sketch dialog with area enabled

123

	Untitled

