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Summary. Visualization and quantitative analysis of vessel data is an important
preprocessing step in diagnosis of vascular diseases, monitoring, surgery planning,
blood flow simulation, education and training of surgeons. This paper surveys sev-
eral geometric methods to solve basic visualization and quantification problems like
centerline computation, boundary detection, projection techniques, and geometric
model generation.

1 Introduction

Atherosclerosis is one of the most observed civilization diseases today. Plaque,
a mixture of calcium, cholesterol fibrin and other substances accumulated in
the vessel lumen, causes stenosis or occlusion of the vessel. Depending on
the location of the atherosclerosis strokes, heart attacks, peripheral artery
occlusion disease in legs and aneurysms might be the consequence.

Up to now several methods for data aquisition for diagnosis exist, differing
in technique (X-ray, computer tomography, ultrasound, magnetic resonance),
acquired data (2D or 3D, enhancing different structures like vessels, blood
flow, soft tissue or bones), necessity of contrast agent, efforts and expenses
(invasive, non-invasive methods, costs and time). The present standards for
vessels investigation are Digital Subtracted Angiography (DSA) and 2D Ul-
trasound (US). Conventional DSA and ultrasound are 2D imaging techniques
and do not allow a 3D reconstruction of the vessels. Parts of the vessel tree
might be occluded or the presence of noise makes a diagnosis difficult. Recent
research focuses on visualization techniques for vessels on basis of two or mul-
tiple projections, or (sliced) 3D-data sets of the region of interest allowing
a spatial reconstruction of the vessel tree. Bi- or multi-plane angiography,
computer tomography (CT), magnetic resonance (MR) and 3D ultrasound
(3D US) are such techniques. Datasets produced by CT, MR or 3D US are
huge and cannot be handled manually slice-by-slice in an efficient way. In all
three cases post-processing (geometry extraction and/or rendering) the data
is necessary to extract relevant information.

Geometric processing of vessel data becomes more and more important
for visualization, diagnosis and quantification of diseases, for monitoring the
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disease progress, for surgery planning, and training of surgeons and invasive
radiologists using VR techniques. Finite element meshes provide the basis for
blood flow simulation needed e.g. for planning of bypass surgery and stent
replacement. The generation of geometric vessel models allows a repeatable
diagnosis, and fast, interactive visualization. On the other hand, the method
is highly sensitive to object selection criteria (threshold, segmentation algo-
rithm) - wrong setting can lead to missing important information.

In our paper we will survey and discuss different geometric methods ap-
plied to vessel visualization and geometric model generation. In section 2
different kinds of skeletonization methods based on topological thinning pro-
cesses, distance transformation, or Voronoi diagrams are discussed as well as
applications of skeletonization algorithms like centerline determination, and
graph based representations of vessel trees. Direct centerline tracking algo-
rithms applying e.g. Dijkstra’s shortest path algorithm will be summarized
in section 3. Deformable models, more precisely, different kinds of snakes,
level sets, and ray propagation methods are summarized in section 4. Ex-
amples demonstrate the power of the method to reconstruct centerline in
bi- or multiplane angiograms, to extract contours, and to generate directly
implicit, parametric or discrete mesh representations of vessel surfaces or vol-
umes. Vessel model generation from given contours is presented in section 5.
Section 6 deals with direct iso-aurface extraction, connnected problems, and
proposed solutions for iso-surface extraction applied to vessel data. Curved
planar reformation as a special projection technique for CT angiograms is
discussed in section 7. A short summery is given in section 8.

2 Skeletonization of vascular structures

The term skeleton and its generating medial azes transform has been first
introduced by Blum [11] in the context of shape recognition in computer vi-
sion to describe and characterize geometries of biological shapes. Skeletons
are a kind of “stick-figure” representation of an object: the shape is reduced
to the set of its medial points which is the locus of the centers of all maxi-
mal inscribable discs / spheres within the boundary of the object. In the 3D
case a skeleton consists of branched 2D manifolds that degenerate to space
curves for tube-like structures. The connection of each skeleton point with
the radius of its associated disk or sphere allows an error free reconstruction
of the shape. Puig Puig [82] characterizes skeletons in the following way: A
skeletonal representation is a unique and complete object representation, it
provides dimensionality reduction, symmetry detection and invertability.
The tubular shape of vessels is particularly suitable for skeletonization:
the skeleton of a vessel tree is in the ideal case a tree of connected space
curves representing the centerlines of branches of the vessel tree. Skeletoniza-
tion algorithms applied on segmented angiograms, MIPs or volume represen-
tations of vessels are a powerful and widely used tool for centerline detection
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[78, 7, 82], path planning for virtual endoscopy [17, 110] and graph based
classifications of vessel trees [96].

2.1 Definitions of skeletons

An intuitive definition of skeletons based on maximal inscribed disks/
spheres has already been mentioned above. Blum [11] also defined the skele-
ton of a continuous 2D shape in the following way: The skeleton of a con-
tinuous 2D shape is the set of all points which are equidistant from at least
two points on the boundary of the object. Blums definition has been refor-
mulated using different paradigms, has been translated to 3D, and discrete
problems. An often cited, very illustrative physical interpretation that can
also be applied to the 3D case is given by the prairie fire or grass fire
model: Assumed that the boundary of the shape is set on fire, the skeleton
is formed by the loci where the fire fronts meet and quench each others. In
classical mechanics the wave propagation in the grass fire model leads to the
Eikonal equation, a special type of Hamilton-Jacobi equation [41, 99]. Geo-
metrically this process can be described using offset curves or surfaces of
the shape: The skeleton of a shape is the set of all singular points of offset
curves / surfaces inside the shape. The singular points of the offset shapes
are just those points with equal shortest distance from at least two boundary
points and therefor exact those points where the fire stops.

Connecting each inner point (x,y) of the shape with its minimal distance r
from the boundary, the following definition of skeletons using (continuous)
distance surfaces (x,y,r) is obvious [41]: The skeleton of a planar shape is
the set of points at which the distance surface is not continuously differen-
tiable. The same principle can be extended to 3D shapes. Another definition
of skeletons is based on the fact, that the medial axis of polygonal shapes can
be obtained computing the Voronoi diagram of the boundary line segments.:
The inner Voronoi diagram of the boundary points of a 2D shape is homo-
topically equivalent to the skeleton of the object [75, 73]. Assuming infinite
sampling rate, the so defined skeleton is correct. Finite sampling rate leads
to an approximation of the skeleton. The definition can be also translated to
3D: in this case the skeleton is defined as the locus of centers of all tetra-
hedra of a Delaunay tetrahedralization (the dual of the Voronoi diagram) of
the boundary surface.

An interesting overview and several references on different definitions of
skeletons using paradigms from geometry and mechanics can be found in
[41]. Relation between Evolutes and Skeletons are presented in [5]. A theo-
retical mathematical discussion of the medial axis transform in the context
of differential geometry can be found in [18].
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2.2 Algorithms and Applications

There exists a wide variety of sequential and parallel skeletonization algo-
rithms for continuous and discrete 2D and 3D data applying one or more
of the above definitions on given data. Algorithms are classified by method
(topological thinning, distance map based, or based on Voronoi diagrams) or
by input data (continuous, polygonal, discrete). As we focus on techniques
for vessel visualization, only skeletonization algorithms for discrete data will
be discussed here. A good bibliography on the topic can be found in [71].

In general, the direct application of the definitions presented in the last
section on discrete data leads to problems: noisy data produces skeletons with
too many branches, and quality and shape of the approximated skeleton de-
pends highly on the chosen discrete metric. Branch clipping algorithms or
hierarchical models [75] try to reduce the complexity of the computed skele-
ton and the influence of noise: heuristics are used to detect those branches
representing less important features of the shape. Another problem that arises
processing discrete data is based on the fact, that due to the finite resolution
of the underlying grid, the skeleton is not uniquely defined and special care
has to be taken to preserve connectivity. Nytrom [74] and Chen et al. [17] list
some criteria for a good skeleton approximation in discrete data: It preserves
the topology of the original shape, and approximates the central axis, it is
thin, smooth, and continuous. It should allow full object recovery.

Topological thinning Topological or morphological thinning algorithms are
based on the grass-fire definition of skeletons. The boundary of a binary
object is iteratively peeled off deleting in each iteration step points that fulfill
certain geometric and topologic constraints. Thinning algorithms preserve
theoretically topology, but symmetric thinning and connectivity preservation
is a difficult task operating on discrete data. Digital topology [6, 26, 78]
provides a theoretical basis to overcome this problems: Points are classified
according to their neighborhood into different kinds of border, background
or foreground, simple, and end points. This allows a derivation of grade of
influence on the topology of the object. Another theory applied in thinning
algorithms is mathematical morphology [27, 32, 62]. Here the thinning process
is defined using so called structuring elements and morphological operators
like dilatation, erosion, opening and closing.

Topological thinning has been applied to skeleton extraction of vessel
trees by several authors. Palagyi [78] presents a sequential thinning algorithm
for segmented data and applies it for center path computations of aortic
aneurysms. Doklddal [26] proposes a two step method of skeletonization of a
3D grey scale objects using luminosity-driven homotopic erosion. Flynn [32]
applied a topological thinning algorithm to automatic vessel extraction in
digital ophthalmic images to support the study of changes the vessels over
time. Maglaveras [62] and Eiho [27] extract skeletons of coronary artery trees.



Geometric Methods for Vessel Visualization and Quantification 5

Selle et. al. [96] use a thinning algorithm to construct a characteristic graph
of the vessel tree to allow a graph based analysis of the structure.

Distance transform Skeletonization algorithms based on distance transforma-
tions are a direct application of Blums skeleton definition on discrete binary
data. The distance transformation of binary data is the process of labeling
each voxel with the (approximated) Euclidean distance to its closest back-
ground voxel. The type of discrete approximation of the distance depends on
the application. A good survey on Euclidean distance approximations and
the influence on the shape of the skeleton can be found in [82, 74]. Puig Puig
[82] introduces and discusses the discrete medial azes transform (MATD)
for segmented 2D and 3D data: The skeleton of the object is defined as set
of centers of maximal balls constructed with the labeled distance as radius.
Puig Puig also shows examples for skeletonization of (synthetic) vascular
structures. Subsets of skeletons necessary e.g. for path planning, can be de-
termined computing minimum-cost spanning trees in the distance map using
Dijkstra’s shortest path algorithm [7, 110, 17, 103]. For a detailed discussion
of tracking algorithms, the reader is referred to section 3.

Hybrid approaches Hybrid algorithms combine topological thinning with dis-
tance maps to handle difficulties introduced by anisotropic voxels to ensure
the symmetry of the thinning process. Nysr6m and Smedby [74] adapted an
algorithm of Borgefors [13] for skeletonization of volumetric vascular struc-
tures. The same hybrid approach has been also used by Selle and Peitgen [95]
as basis for graph analysis of vessels.

Voronoi Skeletons Theory and application of Voronoi skeletons have been
discussed by Ogniewicz and Ilg [75]. These skeletons allow to overcome the
difficulties of topological thinning and distance transform based algorithms
replacing the discrete distance map with the Voronoi diagram of boundary
points. Due to the discretization of the shape by polygonization, Voronoi
skeletons only approximate the true medial axis, but converge against it with
increasing sampling rate. Any vertex of the boundary introduces an additional
skeleton branch. Branch pruning and multi-resolution representations of the
skeleton based on heuristics have been introduced to reduce the skeleton to
topological important parts.

A good overview on discrete Voronoi skeletonization algorithms in 2D
and 3D is given in [73]. The same paper applies a Voronoi skeletonization
algorithms to compute skeletons of organs given as segmented MR datasets.
Attali [3] applies Voronoi skeletonization on the triangulated iso-surfaces of
heart muscles and applies a filtering technique to prune small branches.
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3 Direct tracking of centerlines

For a rough approximation of the skeleton, and for an extraction of vessel
topology, direct tracking of vessels of interest in the raw or binary segmented
data is a broadly used technique [31, 47, 85, 107, 108, 113, 116]. The ap-
proaches differ in the definition of the starting conditions and in the tracking
principle applied. We can classify them into three categories:

Tracking of wave from a seed point is a region growing approach in the
binary segmented data volume, which is enriched by vessel bifurcation de-
tection and topological graph generation [94, 116]. The wave is propagated
from the seed point in the root of the tree. The bifurcations are detected,
when the wave-front splits in separate regions. A similar 2D approach of
wave propagation can be found in [85].

Path tracking from a seed point in given direction is an interactive single
vessel centerline detection method [107, 113] in the raw dataset. By setting
two start-points the user defines a possible direction of the vessel centerline.
The method estimates the next candidate point in this direction and then
computes its precise position as the point with the highest “likelihood-of-
being-center” in the plane perpendicular to this direction. The method has to
be user-supervised and restarted, if it leaves the vessel of interest, it estimates
also the vessel diameter.

Path tracking from a seed point to given end-point(s) [47] uses the principle
of the Dijkstra’s shortest (minimal cost) path search in the graph [24, 25].
The 3D volume is taken as a graph with nodes in places of voxels and links
connecting the neighboring ones. The graph links are assigned a cost, e.g., the
absolute difference of the node values, and a monotone increasing function
for computation of the cost along the path is defined. The shortest path
between two given voxels is found and centered to get the vessel centerline.
The approach can be used in two modes:

— User defines a start-point and one or more end-points, and the shortest
path between them is found [47], or

— User defines a start-point, and all the paths from the start-point to the
whole dataset are pre-computed in the preprocessing step [39]. The whole
vessel-tree can be detected this way, or the shortest path from the point un-
der the cursor to the start-point can be than traced and used for interactive
selection of the vessels.

The first mode can use heuristics for the search space pruning to save time
and memory. The second one must process minimally the complete vessel
tree rooting in the start-point, but allows then the interactive selection of
vessel-tree branches.
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4 Segmentation and geometric model generation of
vessel trees using deformable models

Segmentation and the generation of geometric models of organic structures
is an essential pre-processing step for accurate and repeatable quantitative
analysis of medical image data [67]. Application to vessel trees are blood flow
simulation [112, 101], vascular surgery planning [101], data reduction to reach
real-time frame rates in VR applications [30], tracking [2, 20], registering [91],
and quantifying [52, 33] vascular structures over short and long time periods.

Although extremely time-consuming, manual segmentation performed
slice-by-slice is up today clinical routine. An automatization of this process
is a difficult task due to noise, shape complexity, and variability of the hu-
man body. Todays techniques are far from full automatization. In many cases
a segmentation is impossible without user interaction (e.g. segmentation of
prostata).

Deformable models have been detected early as a powerful tool to com-
bine the a-priory knowledge of anatomical structures of a physician with
automatic image analysis techniques: First, an initial estimating geometric
model is placed by the user close to the object of interest. Physical, optical
and/or statistical forces deform the model automatically in a way that it
approximates the true shape of the object.

Applied to vessel data, deformable models can be used to detect vessel
contours in 2D images, to reconstruct the 3D location of the vessel tree from
bi- or multiplane angiograms using space curves, and to generate a geometric
model of the vessel tree using deformable surfaces or volumes.

4.1 Classification of deformable models

Many different types of deformable models have been developed. The defor-
mation process has been described using principles from mechanics, dynamics
and statistics. McInerney and Terzopoulos [67] classify deformable models in
three categories whose underlying models will be discussed in the following:

— Static energy minimizing (classical snakes, balloons, topological snakes),

— Dynamic (level sets or implicit snakes),

— Probabilistic or shape-based (snakes with probabilistic energy functions,
ray propagation algorithms).

4.2 Snakes

Snakes have been introduced by Kass and Terzopoulus as a special case of
higher dimensional deformable models [49]. They describe a snake in the
following way: “A snake is an energy minimizing spline guided by external
constrained forces and influenced by image forces that pull it towards features
such as lines and edges.”
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In 2D, snakes are defined as a parametric curve ¢(s) C R?,s € [a,b] C R
representing a controlled continuity spline. The discretization of ¢(s) is in
general a set of sorted sample points v; € R?,i = 1,..., n, also called snazels.
The deformation process is driven by minimization of an energy function £
being a combination of internal (shape), external (image) and constrained
(user defined) forces [92]:

b
&= / (ginternal(c(s)) + gimage (C(S)) + Econstr(c(s)))ds (]-)

The image and constrained forces are combined in some publications to a so
called external force Eczternai = Eimage + Econstr- The image energy Eimage
is often described by an integral of a potential P(c(s)).

The 2D snake concept can be easily transfered to surface or volumet-
ric object representations replacing ¢(s) by a parametric surface or volume
description and the corresponding discretization by an appropriate mesh.
Existing implementations of snakes differ in

— the underlying geometry, like snaxels, triangular and quadrilateral meshes,
subdivision curves and surfaces, finite element meshs, B-splines, NURBSs;

— the definition of the energy functions, as the chosen parameters for internal
energy, the underlying functions to formulate the image energy (e.g. differ-
ent kinds of filters, luminance or distances, depending on the application),
and possible additional constrained energies like inflation, topological or
spring energy;

— the discretization of the problem, finite differences, discretization of curva-
ture, finite elements;

— the chosen optimization strategy, e.g variational approach, dynamic pro-
gramming, greedy algorithm, simulated annealing, genetic algorithms.

A full discussion would go beyond the scope of this paper. The reader is
referred to [92, 21] where different definitions of energy functions are discussed
as well as discretization methods, and optimizations algorithms.

Snakes heavily depend on a proper initialization. The convergence and
stability of the deformation process depends on the location of the initial
object to avoid that the snake locks at local minima of the energy functional.
The choice of energy functions and related parameters has big influence on the
quality of the snake: filter based energy functions can reduce the influence of
noise, a local determination of parameters of elasticy and additional inflation
or pressure energy can avoid a degeneration (shrinking or flattening) of the
snake. Snakes implementing this concept are also called balloons [21]: an
initial shape inside the object of interest is inflated till it fits the object. A
good discussion and some recipes to handle the initialization and degeneration
problem can be found in [87]. The inability to adapt to changing topology
is another problem of snakes. Topology adaptive curve and surfaces snakes
[68, 69] (T-snakes) have been introduced to overcome this problem. T-snakes
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also use inflational forces like balloons but are additionally, reparametrized
during the optimization process. This allows topological changes of the snake
like the split into two separate snakes.

Different kinds of snakes have been applied successfully to segment vessel
data. Klein et al [52] mention, that B-Splines have some characteristics that
make them well suited for a segmentation of vessels and optimization us-
ing dynamic programming: they are smooth and continuous and completely
defined by few control points with local control. Furthermore they have an
implied internal energy keeping them well shaped, thus an explicit formula-
tion of Einternai in equation (1) is not necessary, but can be given to extend
shape constraints. Furthermore, the piecewise nature and local influence of
control points allows to write and compute the curve energy £ as the sum of
energy terms for each span.

Planar B-spline snakes have been applied to extract vessel contours in
quantitative coronary angiograms [52, 2]. (B-Spline) space curve snakes have
been chosen as basis for centerline determination in 3D MRA [33], and for re-
construction of catheter paths [72] or the whole vessel topology [88, 14] from
bi-plane angiograms. Frangi et al [33] also propose surface snakes represented
by tensor product B-spline surfaces to model vessel walls. The initial model
consists of a swept surface, i.e. a circle with radius equal to the expected
average vessel width is swept along and orthogonal to the central vessel axis.
Special care has to be taken to avoid self intersections of the model. The same
model with different energy functions has been used by Huang and Amini [44]
for geometric model generation of tubular structures in volumetric 3D image
data. A tubular deformable model for vessel reconstruction based on trian-
gular meshes similar to the snake model proposed by Frangi [33] has been
recently proposed by Yim [114]. He critizises the inflexibility of the mesh
due to smoothing constraints and proposes a more generalized deformation
process analogous to a mechanical equilibration process. Pujol et al [84] re-
construct vessel walls in intravascular ultrasound images as iso-surfaces of
deformable B-spline volumes. Hu [43] proposes a snake with variable stiffness
parameters for vessel boundary extraction to allow to adapt to strong and
smooth or missing edge features. Different kinds of discrete statistical snakes
have been applied to segment cross-sections of vessels in intravascular ultra-
sound images [89, 80] and angiographies [104]. McInerney and Terzopolous
[69] demonstrated the power of 2D T-snakes in application to vessel trees in
angiographies. A little seed snake placed in the inside of a vessel starts to
grow and to segment all vessel branches in a flow-like manner. 3D T-snakes
have been applied successfully to compute a triangular mesh representation
of the vascular system of the brain based on 3D MRA data [68].

Other interesting methods have not yet been applied to model generation
of vessels like surface snakes based on finite element meshes proposed by
Cohen [21] and McInerney [66]. Liirig et al [60] as well as Hug et al. [45]
combine the subdivision process of subdivision surfaces with snake energy
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functions. Radeva et al [86] propose snake based on tensor product B-spline
volumes for segmentation and tracking of heart motion of SPAMM MRI data.

4.3 Level Sets

Level sets, introduced by Osher and Sethian [77] to describe evolving geome-
tries, provide an implicit description of boundaries. Application areas of level
sets are problems involving moving interfaces, fluid mechanics, combustion,
computer animation, image processing, and robotic navigation. In computer
vision this method has been applied on geodesic active contours to track
objects in movies, and to recover shapes and structures in medical images,
especially vessels.

A level set is formulated as implicit boundary tracking scheme that elim-
inates many of the difficulties when modeling evolving curves and surfaces
using classical snakes: Due to its implicit formulation, level sets are able to
handle arbitrary topologies changes.

Given an implicit curve g; propagating in its normal direction with speed
v, a level set function &(x,y;t) is introduced such that the zero level set
&(x,y;t) = 0 is identified at any time ¢ with the evolving curve g;. Changes
in the geometry and topology of the curve are reflected by changes in the
zero-crossing of @. The searched boudary curve is equivalent to the zero set
of the solution of the following equation:

%ds(w,y;t) +0|Vey®(z,y:t) | =0, and  &(z,5;0) = go(z,y) (2)
The velocity function v determines the evolution of the curve into its normal
direction. Implementations of level sets differ in the definition of v that may
include geometric and image-dependent constraines like the gradient based
velocity decay or stabilized boundary motion. For a detailed discussion of
possible definitions see [112].

The main difference between level sets and snakes is the representation.
Snakes storage explicity the nodal positions and connectivities, instead level
set methods use an implicit scheme which neither positions nor connections
are directly maintained. Furthermore the methods is dimensionality indepen-
dend, and equation (2) describes a well-studied type of differential equation
with a stable numerical solution[112].

One drawback of this method is the computational cost. Different exten-
sions have been designed to reduce the high computational cost, like narrow
band method [1] and fast marching [97, 98] methods. The idea of the narrow
band method is to consider only pixels which are close to the latest position of
the zero level-set contour in both directions (inward and outward). The fast
marching method is designed to resolve problems where the speed function
never changes sign. Recently a new method has been proposed, called Hermes
algorithm [79]. This algorithm combines narrow band and fast marching doing
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selective propagation over a relative small window. Malladi et al [64, 63, 65]
applied narrow band and fast marching methods to recover shapes in medical
images. A comparision of level sets with calssical snakes and balloons showed
that the narrow band method has the best performance in application to
arterial tree recovery in DSA images [65].

The geodesic active contours model is a geometric alternative for snakes
based on the level set method to handle topological changes for the evolving
curves. This method is comparable to classical snakes because it does not
depend on the curve parameterization, but, due to the level set implementa-
tion, topological changes are easily handled. Lorigo et al. used this method
for segmentation of bones in clinical knee MRI [57], the segmentation of brain
vessel using MRA [59], abdominal aorta using CT images [55], and cerebral
vessel with MRA images [58]. Wang et al. [111, 112] proposed a combination
of level sets and thresholding, which has been successfully applied to geo-
metric model generation from MR images for blood flow simulation, as well
as for preoperative surgery planning. They also did an analysis of different
geometric models to construct a model of vascular structure from snakes and
balloons to level set methods. Level sets turned out to be the best choice with
respect to topological adaptability.

Recently Magee [61] combined a 3D deformable model with level sets for
segmentation of vascular structure, specifically for the abdominal aorta. The
deformable model used is based on a triangulated mesh. The deformation
process is knowledge based applying the so called Expert Structure Model
(ESM). The ESM defines a probability distribution associated to features
of interest such a branching vessels. One drawback of this method is the
computational cost due to the cost of stochastic process involved.

4.4 Ray Propagation

The ray propagation method consists in drawing up rays over the object of
interest from inside to outside.

The method can be described by a family of curves in 2D ¢(s,t) C R
s € I C R denotes the curve parameter and ¢t € J C R the time. The
evolution is governed by:

%c(s,t) = v(z,y) n(s,t) and ¢(5,0) = ¢o(s)
co(s) € R%* s € R is the initial curve, n(s,t) € R? the normal vector.
v(z,y) € R denotes the speed of the ray at point (z,y) and determines the
deformation process.

Ray propagation has been applied to fast segmentation of vessels and
detection of centerlines. In general intensity gradients are used to describe
the velocity function and to stop the propagation of rays.
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Wink [113] presents a work based on ray propagation to generate the true
centerline of a vessel even in presence of calcifications. The algorithm per-
forms in several steps: a manual initialization where the user select at least
two initial points, computation of a next candidate point for the vessel cen-
ter, generation of a perpendicular plane to the vessel axis, determination of
the vessel center and adaptation of the central vessel axis. Given a candidate
point in the plane perpendicular to the vessel axis, several rays are casted.
The ray stops when the border of the vessel is detected. Gradient informa-
tion in the image is used to detect the border of the vessel. The gradient is
calculated as a convolution of the original image with a normalized Gaussian
derivative. Finally a center likelihood measure asigned to the origin of the rays
is defined. The point with the highest center likelihood is selected to be the
center of the vessel. Two problems can be solved using this technique: 1. The
centerline of the vessel is correctly computed even in presence of calcification
and ringing artifacts since the gradient is computed in direction of the ray. 2.
In general, ray propagation requires an external process to handle naturally
the topological changes. In presence of a bifurcation the presented algorithm
allows to select several points with highest likelihood, e.g. by tracking just
one of the branch or by user interaction.

A recent work based on ray propagation was presented by Tek [102]
proposing the mean shift analysis. These method points toward maximun
increase in the density, representing an estimate of the normalized density
gradient computed at one point. It is a statistical technique based ray prop-
agation. It is assumed that the locations of the small gradients in a displace-
ment function should not be part of any object boundary.

Drawbacks of ray propagation method are, that it requires user interac-
tion, does not handle the topological changes and requieres constant param-
eters for the evolution equation and window size.

5 Model generation from given contours

The generation of a vessel surface model from a set of contours is used in
cases, when direct 3D segmentation methods are impossible to use, or in
cases, when local corrections of the surface are necessary [35].
Reconstruction of a vessel surface model from a set of cross-sections con-
sists in creation of such a surface, that approximates the “original” vessel as
good as possible. The only real knowledge about the vessel is represented by
the shape of the cross-sections. Therefore, if we cut the reconstructed surface
by the original planes, we must get the same regions in the cross-sections.
The contours of these regions are typically approximated by closed simple
polygons, which never lie inside others, as the vessels do not contain holes.
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5.1 Surface reconstruction techniques

Surface reconstruction techniques usually build the surface step-by-step con-
necting the contour points in adjacent cross-sections by triangular tiles [28,
50, 70, 76]. A method using the information from more neighboring layers
has been published by Barequet et al.[4]. Meyers et al. [70] decomposed the
surface reconstruction problem into four fundamental subproblems:

The correspondence problem. Which contours in one cross-section should be
connected to which contours in other cross-section?

The tiling problem. How should the pairs of given contours be connected?
Which vertices and edges should form the triangles?

The branching problem. How to tile the bifurcations, i.e., cross-sections with
a different number of contours?

Surface-fitting problem. What does the precise geometry look like? A possible
post-processing step smoothing the mesh.

The lack of information about the vessel shape between the cross-sections
is solved by local heuristic assumptions. Typical heuristics are: minimizing
volume, minimizing surface area, minimizing edge lengths and minimizing
angles. Gitlin et al. [36] proved, that there exist polygonal shapes that can-
not be tiled without addition of points on the contours or without addition
of intermediate layers. Geiger [34] proved, that this problem can be always
solved by adding at most two Steiner points onto the contours.

Generalized Cylinders Separate vessel segments and vessel trees can be sim-
ply modeled by their centerline and the vessel shape in perpendicular cross-
section. With a limitation of the possible cross section shapes (as described
below), this is the generalized cylinder model. The mathematical model of
the whole vessel-tree surface is defined as a union of generalized cylinders
[51] that represent each segment of the tree. According to Puig Puig [83] a
generalized cylinder of the blood vessel is defined in the following way:

Given a set of cross-sections represented by mnon-penetrating, simple,
closed, conver parametric curves ¢;(u),u € [0,2w),i = 1,..., N. Furthermore
let be s(v),v € I C IR a continuous and simple parametric curve through the
centers (skeletonal points) of all ¢; and orthogonal to their supporting planes.
The corresponding Generalized Cylinder g is defined as the union of blends
between consecutive contour curves

g(u,v) := Ué\slbi(u,v), (u,v) € 10,2m) x I

with bj(u,v) = fi(ei(u),ciy1(u),v),v € I; C R, I; < i1y and UL; = 1,
and blending functions f; defined in a way that no self-interscetion of the
generated surface occure.

The skeleton curve and the contour curves can be represented by B-splines
or often approximated by polygons [37]. Contour curves can be also simpli-
fied to a circle [47]. If the correspondence between the consecutive sections is
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unique, it simplifies the surface triangulation of the separate segments to a
zig-zag triangle pattern. The ends of the generalized cylinders at the branch-
ing points can be simply overlapped (but the overlapping cylinders cause
flickering during rendering), or they can be smoothly triangulated by any
arbitrary contour tiling method with contours in non-parallel cross-sections.

In other approaches, a smooth mesh blend is constructed by means of
convolution surfaces [9, 10], where the implicit function describing the surface
is generated by a convolution of the skeleton curves with the approximation
of the Gaussian kernel. The implicit surfaces (class of curved surfaces defined
as a solution of some equation F(z,y,2) = 0, where the scalar function F
assigns a scalar value to each point in the space) are then triangulated by any
known method [8, 48]. Another method constructs a smooth surface in two
steps [30]: The rough mesh generation is followed by smoothing by means of
the subdivision surfaces [23].

5.2 Volume reconstruction techniques

Volume reconstruction techniques [12, 34] construct a tetrahedral mesh be-
tween the adjacent cross-sections, with contour points as vertices. New ver-
tices are then added to ensure, that the contours are part of the mesh. Fi-
nally, some tetrahedra are eliminated to make the volume consistent with the
contours. The reconstructed surface is then the surface of this volume. The
volume reconstruction subproblems are [22]:

Meshing Which tetrahedra to use to form the initial mesh?

Conforming Where to add points, that all contour edges appear in the mesh?

Sculpting Which tetrahedra should be removed to get the consistent volume
that match the contours?

5.3 Shape based interpolation

The above described methods belong to direct reconstruction methods, as
the original contour vertices in cross-sections become the vertices of the re-
constructed mesh. The use of original vertices limits the shapes of generated
triangles, as no criteria can be used to constrain their aspect ratio. Much ef-
fort is required for detection and handling of special cases to allow a correct
triangulation.

An alternative to the direct reconstruction approach is to use the cross-
sections to estimate a 3D function that represents the measure of distance
from any point to the surface [105]. Among these method belongs the shape-
based interpolation proposed by Raya and Udupa [90], which uses the city-
block distance to the surface. More accurate algorithm for computation of the
distance values by means of chamfer distance transformation was used e.g.,
by Herman et al. [40]. The method works in the following steps: 1. Binary
segmentation of the 2D cross-sections. 2. Computation of the distance-field
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(the distance to the surface) in the cross-section (positive inside, negative
values outside the vessel). 3. Interpolation of the distance field between slices
(linear, cubic spline, etc...). 4. Iso-surface extraction at zero-level in the
interpolated distance field.

The shape-based interpolation methods handle bifurcations and complex
shapes, but fails for large shape changes and for significant translations. This
problem has been addressed by may authors, trying to align centroids be-
fore interpolation, and scale the cross-sections to match bounding rectangles,
etc, but still not generate correct surfaces in complex cases. Treece [105] rec-
ognized that the problem is in the definition of connectivity, because the
correspondence of the whole contours being used is too coarse. He proposed
the disc-guided interpolation, where the interpolation is guided by using cor-
respondence of regions of the cross-sections.

Most of the presented methods handle parallel cross-sections. 3D re-
construction of non-parallel planar cross-sections have been addressed very
rarely [22, 81], but is at present subject to research, motivated by the evolu-
tion of 3D ultrasound techniques [22, 106, 105].

6 Direct mesh generation

One of the simplest method to reconstruct surfaces in scalar or binary volume
data is iso-surface extraction: A fixed threshold value determines the location
of the surface. The standard choice to create triangular meshes based on iso-
values is the marching cubes algorithm [56]. Based on trilinear interpolation,
the algorithm determines step by step the triangulation within each cell be-
longing to the iso-surface. The original algorithm suffers from ambiguities and
creation of non-watertight meshes with a non-optimal triangulation. Many
work has been done to overcome this difficulties: Improved case differentia-
tion, crack prevention, triangle reduction, mesh optimization and acceleration
[54]. For an overview on existing techniques the reader is referred to [93].

Direct iso-surface extraction works well for objects with clearly deter-
mined borders like bones in CT images, but turns out to be problematic
for amorphous objects like vessels. Due to image inhomogeneities, noise and
other artifacts, iso-surface extraction may be problematic especially for mag-
netic resonance and ultrasound images. Additional preprocessing steps are
necessary to enhance contours or to segment the object.

To cope with inhomogeneities in image intensities, Yim and Summers
[115] proposed a local threshold estimation to extract iso-surfaces using a
marching cube algorithm. Results are presented for contrast enhanced MRA
of thoracic aorta and cerebral ventricles.

Cebral et al [15] describe an iso-surface extraction algorithm to generate
CFD meshes for blood flow simulation in arteries (hemodynamics). Several
image filtering and segmentation algorithms are applied in a pre-processing
step to reduce noise and to enhance image contrast. For the generation of
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a triangulated iso-surface a simple two step triangulation algorithm is pro-
posed. The triangular mesh is smoothed using the surface fairing algorithm
of Taubin [100] and optimized with respect to the number of edges and mini-
mized maximum angles [42]. Based on this initial mesh a finite element mesh
is generated. The algorithm has been applied to CTA as well as MRA images.
The same authors present in [16] a simple CSG algorithm to merge differ-
ent branches of finite element meshes of vessels to one watertight mesh. Ertl
et al [29] propose a level-of-detail approach for iso-surface extraction based
on multi resolution analysis and wavelets. An adaptively refined tetrahedral
mesh is computed which is coarse in homogeneous regions and fine in regions
with strong variations. This structure allows a fast and flexible progressive
iso-surface extraction. Meshes of iso-surfaces also have been successfully ap-
plied to improve phase-contrast flow quantification [117] and hepatic MR
angiography [19].

7 Vessel flattening: curved planar reformation and its
extensions

As the technique of multi-slice helical CT evolves, it can deliver high reso-
lution datasets covering large anatomic regions. The contrast-enhanced CT
of large vessel segments can be scanned in nearly isotropic resolution and
can be used for diagnosis with comparable results as an invasive DSA. To
avoid obscuring of the vessels by other high density structures (mainly bone
and inner calcification), a thin slab along the centerline is re-sampled and
displayed as a 2D image.

Given a vessel centerline (see Section 3), a line parallel to the horizontal
axis of the viewing plane is swept along it, forming a curvilinear surface (a
“curved plane”). If we flatten this “curved plane”, and display the voxels in
the close neighborhood of it, we obtain a 2D image of the vessel. The process
of flattening is called a curved planar reformation (CPR) [47].

CPR allows to visualize the vessel lumen together with calcified sediments
along the vessel walls in one direction. CPR is highly sensitive to the precise
centerline localization—wrong centerline distorts the vessel lumen and can
be misinterpreted as an artificial stenosis.

The simplest “flattening” method is done by projection of the line of sam-
ples to the screen—a (projected) CPR. Vessel parts parallel to the horizontal
plane can be mutually occluded during the projections. Also high intensity
structures can occlude the vessel, if parts of the lines intersect bone and
these parts are projected to the vessel structures. To overcome the funda-
mental drawbacks, modifications and enhancements of CPR generation have
been proposed (see [46] for details):

Stretched projection - “flattens” the “curved plane” in the viewing direction.
Therefore, the vessel length is displayed completely, avoiding overlapping
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of the swept line, for horizontal vessel segments, that causes discontinu-
ities in the projected CPR.

Straightened CPR - sweeps the line perpendicularly to the vessel axis (and
parallel to the viewing plane). Therefore, it unfolds the vessel also in the
“left-right” direction, producing a straight line vessel projection.

Rotating CPR - a 180° view animation [46] gives an overview about the whole
vessel.

Multi-path projection simultaneously displays a tree of vessels in one 2D im-
age, by means of overlapping of CPRs of more vessels. This method is
also called the Medial Azis Reformation (MAR) [39]. For a single vessel
is its identical to CPR.

Thick CPR projects a slab of certain thickness. It is therefore less sensitive to
the precise center-line detection. The values in the slab can be composed
by averaging, maximal (MIP) of minimal intensity projection (MinIP)

8 Summary

Geometric processing of vessel data is a challenging task due to image in-
homogeneities, noise, artifacts, and the undetermined human anatomy. Ge-
ometric vessel models allow repeatability of quantitative analysis, objective
comparison of data, and provide the basis for blood flow simulation. Special
projection techniques like CPR enable resolve occlusions and to investigate a
complete vessel branch. The most important geometric methods for vessel vi-
sualization and quantification have been surveyed in this paper. All presented
methods are actual topics of research:

Skeletonization and center path tracking are the basis for many applications
and an important pre-processing step for other algorithms, like graph-
based analysis of vessel trees, geometric model generation from given
contours and centerlines, and curved planar reformation.

Deformable models are one of the most powerful and widely used tools for the
treatment of vessel images: segmentation and geometric model generation
in 2D and 3D are the most important application areas.

Models generated from given contours or centerline and radius information
are a simple method to generate approximative meshes.

Iso-surface extraction is the classical method to generate mesh representa-
tions for vessels

CPR is a standard technique for analysis of CT or MR angiographies avail-
able in most commercial analysis tools on the market.

Due to the huge amount of existing publications it was not possible to men-
tion all applied geometric methods like projection techniques used for 3D re-
construction of vessel trees from bi- and multiplane angiograms/projections
[109, 38], and fractal structures for the modeling of vessel trees [53].
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