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A b stra c t

In this paper we concentrate on an optical effect well-suited
for architectural or g ame-related rendering s: g lossy refl ec-
tions on planar surfaces. W e demonstrate a physically rea-
sonab le approx imation of g lossy refl ections at slig htly imper-
fect refl ecting surfaces — e.g . most fl oors — that can b e im-
plemented at minimal performance penalty when compared
to perfect refl ections. An ev aluation of our implementation
using only standard g raphic AP I functions in O penG L 1 .2
concludes the paper.

F ig ure 1 : G lossy refl ections in an architectural scene.

1 In tro d u c tio n a n d Re la te d W o rk

Almost all effects formerly associated with ray-tracing al-
g orithms can now b e reproduced or at least approx imated
in real-time using hardware-accelerated z-b uffers: tex turing ,
transparency, local lig ht models, point lig ht shadows, and
refl ections in plane mirrors. Another class of effects simi-
lar to those produced b y distrib uted ray-tracing can b e im-
plemented b y merg ing multiple z -b uffer rendering s: motion
b lur, depth of fi eld, and g lossy refl ections [D iefenb ach 1 9 9 6]
can b e approx imated b y multi-pass rendering techniq ues. In
this paper we concentrate on an optical effect well-suited for
enhancing architectural rendering s or g ame eng ines: g lossy
refl ections at planar surfaces (see fi g ure 1 for an ex ample).
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G lossy refl ections g enerally occur on most polished fl oors
and help — tog ether with shadows — in v isually “ anchoring ”
ob jects to the fl oor. T he main v isual difference b etween
g lossy and perfect refl ections lies in the v isual sub tlety of
g lossy materials. A perfectly refl ecting surface ov erloads the
imag e with unnecessary detail. E v en when ov erlayed with
a fl oor tex ture, the resulting sharp and detailed v iew in the
mirror distracts from the actual scene.

As mentioned ab ov e, g lossy refl ections can easily b e im-
plemented using path tracing [K ajiya 1 9 8 6]. Althoug h some
adv ances in real-time raytracing hav e recently b een made
[W ald et al. 2 0 0 1 ] [P urcell et al. 2 0 0 2 ], ex act g lossy refl ec-
tions req uire sampling the B R D F and shooting multiple re-
fl ection rays, b ring ing ev en these alg orithms out of the realm
of real-time.

D iefenb ach [D iefenb ach 1 9 9 6] demonstrates how g lossy re-
fl ections can b e implemented using the O penG L accumula-
tion b uffer in comb ination with a hig h numb er of rendering
passes which also precludes its use in real-time rendering . A
fast approx imation of g lossy refl ections on curv ed surfaces
can b e produced b y pre-fi ltering env ironment maps [K autz
and M cC ool 2 0 0 0 ], b ut this approach cannot b e ex tended
to planar surfaces and inherits the well-k nown artifacts of
env ironment maps. B astos et.al. [B astos et al. 1 9 9 9 ] hav e
demonstrated how to apply imag e-b ased techniq ues in com-
b ination with 2 D conv olutions to produce g lossy refl ections
on fl at surfaces. T heir approach produces hig h-q uality im-
ag es, b ut at considerab le computational load on the C P U .
F urthermore they deliv er constant rendering time per refl ec-
tor, b ut at additional memory cost depending on the refl ec-
tor area, which can b e considerab le in the case of b uilding
fl oors. T heir approx imation of the b lurring of the g lossy re-
fl ection consists — similar to ours — of just an imag e space
conv olution of a perfect refl ection.

In desig ning our approach, we considered the following
criteria important:

• adjustab le approx imation of b lurring and ang le depen-
dent fading of refl ected imag e

• minimal runtime and memory ov erhead opposed to per-
fect refl ections

• easy integ ration into ex isting rendering solutions

W e want to apply our alg orithm on a wide rang e of com-
modity g raphics hardware, so reliance on v endor-dependent
solutions or hig h-end hardware was not an option. S pecif-
ically, we want our method to work on any 3 D accelerator
produced in the last few years.

2 A p p ro x im a te d E ff e c ts

G enerating g lossy refl ections needs to account for two major
effects: the scattering of lig ht due to the microfacet distri-
b ution of the surface and the increase of refl ectiv ity near
g raz ing ang les due to the F resnel function.
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The effect of the microfacet distribution

Figure 2: A partially glossy BRDF.

In fi gure 2 th e distrib ution of refl ected ligh t of a partially
glossy BRDF is depicted. It consists of a part th at is in-
dependet of th e incom ing direction b ased on th e diff use or
lam b ertion com ponent of th e BRDF, and a refl ection lob e
b ased on th e non-diff use com ponent of th e BRDF. In order
to m im ic th e eff ect of glossy or non-diff use refl ection it is
necessary to analyse th e eff ect of th is refl ection lob e. T h is
refl ection lob e is caused b y th e m ic rofacet distrib ution of
th e surface. For a giv en m ax im um dev iation angle alph a of
th e m ic rofacet norm als from th e av erage surface norm al, th e
resulting refl ected ligh t cone is b ounded b y a cone w ith its
apex in th e refl ection point and an opening angle of 2α as
sh ow n in fi gure 3 .

α
α2

Figure 3 : T h e w idth of th e refl ection cone b ased on th e
m ax im al dev iation angle α of th e m ic rofacet norm als.

Based on th is refl ection cone th e refl ection scenario on a
fl oor surface is depicted in fi gure 4 . As w e are designing
an im age space algorith m , w e consider all v iew ing rays th at
aff ect a single im age location – a single pix el.
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Figure 4 : T h e refl ection cone for all v iew ing rays th at aff ect
a single im age location. e ... eye h eigh t, h ... ob ject h eigh t,
d ... ob ject distance.

In order to em ulate glossy refl ection b y im age space fi l-
tering, w e need to estim ate th e size of th e fi lter k ernel th at
w e w ill use. By calculating th e relativ e size of th e refl ection
cone w ith respect to th e v iew ing distance, r / d, w e get an
approx im ation of th e relativ e size of th e fi lter k ernel w ith
respect to th e projection plane distance. N ote th at w e use
th e norm al distance to an assum ed v ertical projection plane.
T h is is an assum ption th at is v alid for typical arch itectural

scenes, b ut of course it is lim iting th e applicab ility of th e
algorith m som ew h at.

Figure 5 sh ow s th e necessary fi lter radius r / d for an ob -
serv er w ith h is eyes 1 .6 5 m ab ov e a refl ecting surface, a m ax -
im al norm al dev iation of th e m ic rofacets of α of 5 degrees,
and ob ject h eigh ts from 0 .5 to 2.5 m in 0 .5 m steps. T h ese
ranges of param eters w ere ch osen to cov er typical ex am ple
arch itectural scenes. S tarting at a distance of ab out 5 m e-
ters from th e ob serv er, th e fi lter radius for an ob ject of a
giv en h eigh t rem ains approx im ately constant.
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Figure 5 : T h e necessary fi lter radius r / d depending on th e
ob serv er distance d for ob jects of h eigh ts h = 0 .5 , 1 .0 , 1 .5 ,
2.0 , and 2.5 (b ottom to top) . E ye h eigh t e= 1 .6 5 m , m ax im al
m ic rofacet dev iation α = 0 .5 degrees .

The effect of the F resnel function

T h e fresnel function describ es th e energy b alance b etw een
refl ected and refracted ligh t on a transparent surface b ased
on th e relativ e refraction index of th e transparent surface at
th e interface. G lossy m aterials lik e polish ed fl oors and paints
are sub ject to th is eff ect, as th eir surface is cov ered b y a th in
layer of transparent w ax or sim ilar m aterial th at is transpar-
ent and accounts for th e h igh refl ectiv ity of th e m aterial. In
fi gure 6 th e eff ect of th e fresnel function as a function of
ob ject distance is sh ow n for v arious ob ject h eigh ts.
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Figure 6 : T h e fresnel factor F for refl ected ob jects of h eigh ts
h = 0 .5 , 1 .0 , 1 .5 , 2.0 , and 2.5 (top to b ottom ) depending on
th e ob serv er distance d. E ye h eigh t e = 1 .6 5 m ., th e refrac -
tion index η = 1 .5 .
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3 Our Approach

We have to realize two different phenomena: the blurring
of the reflected image, depending on the distance from the
reflector, and the angle-dependent attenuation of the reflec-
tion. O ur approach is based on rendering the mirrored ge-
ometry into an off-screen buffer, and compositing this buffer
into the screen buffer.

F ad in g

We have to simulate two independent fading effects: the fad-
ing into a uniform back ground color caused by the increased
blurriness of the reflected scene with growing distance from
the reflector (an effect, that D iefenbach [D iefenbach 1 9 9 6 ]
approx imates using hardware fog) and the angle-dependend
attenuation of the reflection.

O ne possible method of implementing these effects would
be by implementing them as pix el shaders [A k enine-M oeller
and H aines 2 0 0 2 ]. H owever pix el shaders are of limited size,
and by using different methods for achieving these effects,
we free the pix el shaders for additional uses.

O ur algorithm discretizes the effect by simulating the dis-
tance and angle dependence using attenuation by partially
transparent planes. A fter rendering the reflected part of the
scene, these attenuation planes are rendered into the reflec -
tion in a back -to front fashion, resulting in an increasing
attenuation effect dependent on the number of attenuation
planes between the geometry and the viewer. A ligning these
planes parallel to the reflector, results in fading of the reflec -
tion with increasing distance from the reflecting surface (see
fi gure 1 3 ).

A dditionally we want to modulate the intensity of the re-
flection with varying inc ident angle. A s already described,
polished surface materials ex hibit higher reflectance at graz-
ing angles, an effect that could be realized similar to the
method above by rendering an attenuation tex ture on top of
the reflection.

S uch a tex ture would implement a one-dimensional map-
ping of angle to attenuation. T he tex tures scale depends on
the distance of the viewpoint to the reflector. T heoretically
the tex ture would have to cover the reflector up to the hori-
zon while ex hibiting a reasonable high resolution to avoid
artifacts in the near fi eld.

We avoid these problems by combining the attenuation
factors in one method. B y rendering the attenuation planes
introduced above not parallel to the reflector but at increas-
ing angles to it (see fi gure 7 ), we get an attenuation de-
pending on the inc ident angle measured parallel to the view-
ing direction. N ote that the parametrization of the fresnel-
function in fi gure 6 has been chosen as a function of distance
and height of the reflected object. T hus we can compute a
least sq uares optimization for the position of each attenua-
tion plane by numerically computing all object heigths which
result in the same fresnel factor. T he attenuation planes
serve as a useable approx imation, as the functions for dif-
ferent object heights attain the same fresnel factor at nearly
eq uidistant points in the graph.

T o correctly implement angle-dependent attenuation one
would have to render not transparent planes but coax ial cone
segments. In view of the already applied approx imations this
is an unnecessary refi nement.

B lurrin g

Lik e B astos et al. [B astos et al. 1 9 9 9 ], we approx imate the
the blurred reflection by performing a 2 D -convolution with

F igure 7 : T he tilted planes that seperate regions of constant
attenuation for a given viewing direction.

a space-invariant k ernel over the perfectly reflected image.
T he estimated fi lter k ernel sizes have been shown in fi gure
5 . A fi rst approx imation for the k ernel size is to assume a
constant blurring of the reflection between planes at varying
height that are parallel to the reflective surface. H owever
comparing an implementation with such different slabs of
varying fi lter size (fi gure 8 , left) with a much simpler imple-
mentation of constant fi lter size combined with attenuation
at the slab boundaries (fi gure 8 , right) shows that not much
can be gained by varying fi lter sizes. A lthough the visible
detail for parts of the scene is noticeably higher when fading
is used, these details are mask ed by lower contrast, and often
by a tex ture of the glossily reflecting surface (see fi gure 1 2 ).
T he attenuation rate and fi lter size necessary for simulating
materials of different glossiness has been determined ex per-
imentally.

F igure 8 : B lurred (left) versus faded (right) slabs.

C om b in e d approx im ation of fad in g an d b lurrin g

A s both effects are now handled by attenuation planes, the
location of these plane is chosen using a least sq uares ap-
prox imation that is based on the combination of the fuctions
depicted in fi gure 5 and fi gure 6 . T he number of attenua-
tion planes can be chosen to avoid any visible steps in the
attenuation of the mirrored geometry. In our ex periments
we chose 6 4 or 1 2 8 planes to avoid artifacts.
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The resulting image (figure 14) now combines both atten-
uation factors in a p lausible way .

4 Implementation

F or a start, we imp lemented the standard O p enG L p lanar
refl ection techniq ue using stencils p lanes [B ly the et al. 1999].
H ere the scene is rendered normally , ex cep t for the mirror,
which is rendered into the stencil p lanes so that it p roduces
a mask for the nex t rendering step s. N ormally one continues
with rendering the refl ected scene so that it is only v isible
inside this mask .

W e hav e to p erform additional step s to imp lement our
algorithm:

• render refl ected scene

• render attenuation p lanes (cones) dep ending on v iew-
p oint

• conv olv e scene with blur filter

• cop y blurred scene image into the mirror mask

The location of the attenuation p lanes hav e been p laced to
ap p rox imate the refl ection characteristic of the surface ac-
cording to the fresnel function (see figure 6 ) and the neces-
sary filter widths (see figure 5 ). This ap p rox imation can be
p erformed in adv ance, and is based on the simp lified numer-
ical ap p rox imation according to the p arametrization giv en
in these two figures. The number of attenuation p lanes has
been ex p erimentally chosen to av oid v isual artifacts.

The most time-consuming step s here are the additional
rendering p ass for the refl ected scene and the conv olution.
A t the moment we just render the comp lete scene geometry
in the refl ection without additional op timizations (see future
work ).

C onvolu tion S peed -U p

The conv olution can be p erformed using the techniq ues p re-
sented by H adwiger et al. [H adwiger et al. 2 0 0 1], with a
p erformance dep endent on the size of the filter k ernel. M ost
materials ex hibit a relativ ely strong blurring, thereby mak -
ing a large conv olution k ernel necessary , leading to fill-rate
limitations in the p rocess of conv olv ing the refl ected scene.
W e av oid this by rendering the refl ected scene at a lower
resolution than the final image. A lthough this minification
is not the same as filtering, hardware antialiasing and tex -
ture filtering increases the q uality of the rendered image,
ap p roaching a correctly filtered v ersion. W e now only need
a small conv olution k ernel (we use 4x 4) to blur the refl ec-
tion. To render the refl ected scene at a lower resolution one
can just use the back -buff er, or — subject to av ailability —
p buff ers, render-to-tex ture or a similar ap p roach.

C omb ining Refl ec tion and S cene

N ow we combine the refl ected, blurred scene with the p ri-
mary scene by cop y ing an ap p rop riately scaled v ersion of the
refl ection into the mirror mask . N ormally a fl oor tex ture has
been rendered on the mirror, mak ing it necessary to com-
bine the two elements — fl oor tex ture and refl ected image
— using a blending op eration, which results in adding the
intensity of the refl ected image to the fl oor tex ture.

5 Resu lts and E valu ation

O ur sy nthetic test scene (figure 10 on colour p late) dep icts a
cathedral lik e formation consisting of columns, arches, and a
fl oor, each tex tured. It consists of 40 2 5 0 tex tured triangles.
The scene was rendered at a resolution of 12 8 0 x 10 2 4 on two
diff erent p latforms. S ee figure 9 for results.

without
mirror

perfect
mirror

glossy
64 planes

glossy
128 planes

triangles 40250 80500 80500 80500
P4, 2.4 Ghz

Geforce 4 TI 4600 43 fps 31 fps 30 fps 30 fps

P3 Mob. 1.0 Ghz
Geforce 2go 20 fps 13 fps 11 fps 11 fps

F igure 9: R esulting rendering sp eed in frames p er second
with diff erent numbers of attenuation p lanes.

A s can be seen in the table in figure 9 , our algorithm in-
troduces no significant ov erhead to the standard p erfect re-
fl ection imp lementation. A lthough a simp le imp lementation
of a mirroring surface by rendering the comp lete geometry
as a mirrored world can p otentially increase the rendering
time by a factor of two, occlusion culling methods together
with v iewing p ortals can be ap p lied. U sing these techniq ues
the ov erall cost can be reduced to be on the order of the
v isible detail in the final rendered image.

N ote that our algorithm does not need to use p ix el shaders
for generating this eff ect. W e do not see this as a major
disadv antage of our algorithm, as the p ix el shader p rograms
with their strict size limits are still av ailable for other eff ects.

In figures 10 to 14 (on the colour p late) we comp are diff er-
ent renderings of the same scene and v iewp oint. F or better
v isibility the fl oor tex ture has been omitted. The figures
show renderings without refl ection (fig. 10 ), p erfect refl ec-
tion (fig. 11), attenuation p lanes p arallel to the fl oor (fig. 13 ,
no fresnel term) and tilted attenuation p lanes (fig. 14).

F igures 13 and 14 show the significance of the fresnel term.
The comp arison between figure 11 and figure 14 demon-
strates the diff erences between conv entional refl ections and
our glossy refl ection: the blurred refl ection enhances the
v isual q uality of a glossy material and the fading reduces
unnecessary refl ections in the near field, while maintaining
strong refl ections at graz ing angles.

6 F u tu re W ork

S ince the glossy refl ected image normally does not ex hibit a
large amount of detail, it would be p ossible to use a lower
detailed rep resentation of the scene to render the refl ection.
This could significantly imp rov e the sp eed of scenes contain-
ing multip le mirrors.

A further sp eedup could be introduced by clip p ing all
p arts of the refl ected scene which are attenuated under a
certain lev el. This clip p ing could not be ap p lied if light
sources are to be rendered in the scene, since these would
normally show up in the refl ection ev en when highly atten-
uated. R endering the lights would imp ly rendering all p o-
tentially occluding geometry between them and the mirror,
ev en when the geometry itself would alway s be attenuated
to inv isibility .

O ur algorithm can p otentially be ex tended to cov er
translucent, scattering surfaces. In combination with soft
shadows this would allow p lausible renderings of frosted glass
p artitions.
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Figure 10: The test scene without reflections.

Figure 11: The test scene with p erfect reflections.

Figure 12 : A tex tured floor m a sk s a p p rox im a tions in the
glossy reflection.

Figure 13 : The test scene with a ttenua tion p la nes p a ra llel
to the reflection p la ne.

Figure 14 : The test scene with tilted a ttenua tion p la nes.

Figure 15 : A nother v iew of our a rchitectura l sa m p le scene.
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