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Abstract
Vector fields are a common concept for the representation of many different kinds of flow phenomena in science
and engineering. Methods based on vector field topology are known for their convenience for visualizing and
analyzing steady flows, but a counterpart for unsteady flows is still missing. However, a lot of good and relevant
work aiming at such a solution is available.
We give an overview of previous research leading towards topology-based and topology-inspired visualization
of unsteady flow, pointing out the different approaches and methodologies involved as well as their relation to
each other, taking classical (i.e., steady) vector field topology as our starting point. Particularly, we focus on
Lagrangian methods, space-time domain approaches, local methods, and stochastic and multi-field approaches.
Furthermore, we illustrate our review with practical examples for the different approaches.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology and
Techniques—Computer Graphics [I.3.3]: Picture/Image Generation,—

1. Introduction

The concept of flow plays a central role in many fields of
science. Classical application fields are, for example, the au-
tomotive and aviation industry, where the investigation of
air flow around vehicles is an important task. However, the
same concepts are used in the simulation and analysis of wa-
ter flow in turbines of power plants, of blood flow in vessels,
the propagation of smoke in buildings, and weather simula-
tions, to mention just a few. The visualization of data gained
from the simulation/measurement of such processes is rele-
vant for the domain users as visualization has the potential
to ease the understanding of such complex flow phenomena.
In this context, topological flow visualization methods have
been developed, with the aim to give insight into the overall
behavior of the flow. A characteristic of this class of meth-
ods is the segmentation of the flow domain into regions of
substantially different flow behavior, providing a topology
of the flow domain.

Topological methods for flow visualization have been re-
searched over recent decades and a specific conference,
called Topological Methods in Visualization (TopoInVis),
has recently been established [HHT07, HPS08].

The overall setting for topological methods is more gen-
eral than described above. Namely, any vector field , inter-
preting it as the rate of change of a certain quantity, might be
visualized using such methods. Then, the vector field rep-
resents the states of a dynamical system, governed by dif-
ferential equations. In such a setting the evolution of certain
points/configurations can be described mathematically as so-
lutions of the differential equation

ẋ(t) = v(x(t), t).

Because of the tight relation of this model to fluid dynamics
the vector field v is often referred to as flow. Notice, however,
that in that case the vector field needs to fulfill additional
equations (e.g., the Navier-Stokes equation) in order to rep-
resent a flow in a fluid-dynamical sense. If the vector field
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v does not depend on the variable t the system is said to be
autonomous, otherwise non-autonomous. Equivalently, the
expressions steady and unsteady (or simply time-dependent)
flow are used.

In the study of steady flow / autonomous dynamical sys-
tems certain features such as critical points, separatrices
and closed orbits play an important role. In 1989, Helman
and Hesselink introduced these concepts to the visualization
community under the name of vector field topology [HH89].
Methods for visualizing steady flow fields, especially pla-
nar flow fields, have achieved a high level of proficiency,
while the unsteady case is still challenging and by no means
complete [LHZP07, LHD∗04, PVH∗03, PVH∗02, GLW99,
SJWS08].

Vector field topology (VFT) and feature extraction build a
solid base for understanding and visualizing a given steady
flow field, and there is a considerable amount of work avail-
able on possible direct extensions of VFT for unsteady flows.
Although this may seem a canonical research direction, both
theoretical considerations [PC94] and practical demonstra-
tions [SLM05, WCW∗09] show clear limitations of this ap-
proach to unsteady flow.

Taking one step back, the overall goal is to find methods
that can give comparable answers for unsteady flow as VFT
for steady flow, namely to segment the flow domain into
parts with coherent properties in terms of their temporal evo-
lution. Consequently, we consider the term topology-based
visualization as slightly more openly defined and may read
it out to yielding analogous results as topological methods
for the purpose of this survey. Such a segmentation reduces
drastically the information to be displayed in order to con-
vey a holistic understanding of the flow on a more semantic
level.

In the remainder of this introduction we give a short
overview of the field and attempt to structure it. A detailed
discussion with many additional references is then left to the
respective sections.

Classical vector field topology (i.e., for steady flows) seg-
ments the flow domain in regions where trajectories show
the same behavior when looking at the temporal (t) limits
at ±∞. This fact needs special attention when taking the
step from steady to unsteady flow: in a steady field a finite
amount of data can be used to determine the flow behavior at
an arbitrary instance of time. For unsteady fields, this is not
true: the information available is usually restricted to a cer-
tain time-window. This means that, in general, no statement
about the asymptotic behavior of the trajectories is possible.
Visualizing time-dependent flow essentially poses different
research challenges as compared to visualizing steady flow.

Despite this, the first attempts at approaching a topology-
based visualization of unsteady flow interpreted the un-
steady field as a stack of steady flow fields. This induced
the idea that a VFT-like segmentation of unsteady flow can

be achieved using the methods already known for discrete
time slices and identifying corresponding structures in sub-
sequent time steps. Methods for the topology-based visual-
ization of unsteady flow based on trajectories in individual
time steps can be classified as tracking methods (tracking in
time). In Section 3 we give an overview of the research done
in this direction. The trajectories in a fixed time step t = t0
are solutions of the following first-order ordinary differential
equation

ẋ(s) = v(x(s), t0), x(t0) = x0. (1)

These solutions are called streamlines. Notice that the inte-
gration time s is not related to the time t on which the vector
field v depends. The t-time becomes in that case a parame-
ter of the system. Even though this is no issue from a purely
mathematical point of view, the s-time still lacks physical
interpretation. Following a streamline means ‘freezing’ the
flow at some instance of time t and integrating (along a ‘vir-
tual’ time s) to ±∞. Only in special cases do particles fol-
low streamlines in realistic scenarios (and usually for a while
only, if at all).

A promising approach is to investigate the behavior of
pathlines, i.e., the solutions of

ẋ(t) = v(x(t), t), x(t0) = x0. (2)

The solutions of this equation describe the theoretical path
of massless particles through the flow.

Another approach that uses the path of massless particles
is the investigation of so-called streaklines, defined as

xt(τ) = xτ(t) (3)

where xτ is the solution for the initial value problem

ẋ(s) = v(x(s),s), x(τ) = x0 (4)

evaluated at s = t. This describes mathematically the com-
mon experimental setup of injecting a marker (say dye) in
a flow at a fixed spatial location x0 for the time interval
[t0, t]. The function xt is then a parameterization of the curve
consisting of the injected particles at time t, more precisely,
xt(τ) is the position of the particle seeded at τ ∈ [t0, t] at
time t.

The concepts of path- and streakline are essentially differ-
ent from the concept of streamlines in unsteady flow. Their
focus is the behavior of one or more moving particles. There-
fore they can be classified as Lagrangian methods. We dis-
cuss these methods in Section 4. However, applied to steady
flow, which is of course a special case of unsteady flow, all
three definitions yield the same trajectories.

In the context of this view on flow scenarios, structures
that maintain their attracting (or repelling) nature over a
relatively long time play an important role, since they in-
fluence all passing particles in a coherent manner. Along
these lines, a scalar measure for the local separation behav-
ior of the flow, the so-called finite-time Lyapunov exponents
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Figure 1: Approaches and methods used to achieve topology-based unsteady flow visualization and their relations. Thematic
overlap is represented by intersecting building blocks. Solid arrows represent conceptual relations and dashed arrows method-
ological. The orange square collects the current available brick stones that come closest to the topology-based visualization of
unsteady flow. The numbers indicate the sections in which the respective building blocks are discussed.

(FTLE), have gained attention in the visualization commu-
nity [Hal01]. The notion of Lagrangian Coherent Structures
(LCS) recognizes that there are repeating patterns of motion
in turbulent flows [DD04]. This phenomenon of repeated,
similar structures has led to the assumption that understand-
ing these coherent structures will give insight into the mech-
anisms of turbulence. Although, even today, there is no gen-
erally accepted definition of Lagrangian coherent structures,
one important notion is to identify them as the ridges of the
FTLE field [Hal02]. Less formally, LCS can be thought of
as the boundaries between fluid regions for which injected
tracer particles would behave qualitatively different [PD10].
Compared to VFT, there is a subtle, yet important, differ-
ence: in VFT the segmentation into different regions is point
wise (Eulerian perspective) while LCS segments particles
(Lagrangian perspective).

Recently, a mathematical framework called Feature Flow
Field has been introduced which can treat the concepts of
path- and streamlines in a unified way [TS03]. The idea be-
hind this approach is that the unsteady flow is transformed
into a higher dimensional steady flow. Then the computa-
tion of path- and streamlines reduces to the computation of
streamlines of some related vector fields. Classical vector
field topology is not applicable to these fields, however, since
they do not contain isolated critical points. Nevertheless, it
is possible to capture parts of the topological information of
the original vector field, e.g., critical points, periodic orbits,

and vortex axes, by constructing respective auxiliary vector
fields. For different tasks different vector fields are needed.
These and similar methods can be classified as space-time
domain approaches and we discuss them in more detail in
Section 5.

Feature extraction is an important complement to VFT in
the steady case (to be precise, the extraction of some fea-
tures, e.g., critical points, is an integral step in computing
the topology of a steady flow). Of course, it is also desir-
able to extract the unsteady counterparts of the features in
steady flow. Most of the methods used for this purpose are
local, i.e., they use point-wise information only. The actual
extraction is carried out by methods also known from image
processing. In contrast to methods that involve integration,
most of these techniques can be used for unsteady vector
fields (at least to a certain degree – differences can show up,
for example, when derivatives play into the feature specifica-
tion). Currently, they focus mainly on vortex structures and
separation and attachment lines. Local methods of that kind
are discussed in Section 6.

One problem that feature extraction suffers from is that
the definition of features involves parameters like thresholds
or time windows (which is also true for FTLE) or that the
definition is not unanimous (e.g., as for vortices). Often fea-
tures are not detected in the actual vector field but in a field
derived from the original one and the detection of multiple
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features (or various definitions of the same feature-type) has,
consequently, to deal with multiple fields.

Since dealing with multiple feature specifications at once
can be interpreted as dealing with multivariate data, the
use of Interactive Visual Analysis (IVA) has been sug-
gested [BMDH07]. The idea is to combine several feature
detectors in order to investigate combinations of them. This
is valuable both for extracting those features and for under-
standing the parameters that determine behavior that might
be intuitively clear but not precisely defined. Another op-
portunity offered by IVA is to detect correlations between
different feature definitions. Furthermore, this method of-
fers the possibility to meet the needs of the user domain
more flexibly. An engineer, for instance, might be inter-
ested in additional properties (e.g., pressure, temperature,
...) of the medium, apart from the actual flow. On the other
hand, engineers may use different models for the same
situation, according to different tasks. IVA gives the op-
portunity to interactively investigate the relations between
different variables/models using multiple views and link-
ing+brushing [DGH03].

One prerequisite regarding feature extraction is that the
user has to be aware of which feature should be searched
for. Recently, information theory based approaches were
presented that are capable of automatically detecting re-
gions in which something extraordinary is likely to hap-
pen [JWSK07].

Finally, one may be interested in displaying both flow
topology and features. Unfortunately, it is known that sepa-
ratrices may cross features (e.g. vortices) and therefore split
them. Stream- and also pathline predicates offer a possi-
bility to combine several feature detectors and flow topol-
ogy in order to refine the latter, while keeping features in-
tact [SS07, SGSM08].

IVA and the above mentioned methods addressing similar
problems will be discussed in Section 7.

In accordance with this brief overview of the building
blocks available on the way towards topology-based visual-
ization of unsteady flow, the rest of the paper is structured as
follows: (2) Classical Vector Field Topology, (3) Tracking of
Topology, (4) Lagrangian methods, (5) Space-Time Domain
Approaches, (6) Local Methods, (7) Stochastic and Multi-
Field Approaches, and (8) Discussion and Conclusions.

Figure 1 gives a graphical overview of the classes of ap-
proaches and methods and how they are related to each other
as well as a graphical table of content of this article.

As mentioned before, this state of the art report uses
the term topology-based in a broadened way, since it tar-
gets time-dependent vector fields. For such fields, a defi-
nition of ‘topology’ is not yet available, unless adopting a
streamline-based view. As explained, this topology is hard to
interpret in a physically meaningful manner. For a detailed

focus source saddlenode sinknode sourcefocus sink
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Figure 2: Types of first-order critical points in 2D

overview over strictly topology-based methods for flow vi-
sualization and vortex extraction in unsteady flows we re-
fer to Scheuermann and Tricoche [ST05] and Laramee et
al. [HLD07]. Salzbrunn et al. [SJWS08] present a survey of
partition-based methods in flow visualization, covering also
flow topology. Again, the main focus is on methods related
to the tracking of steady topology, but it touches also upon
some of the Lagrangian methods and stochastic and multi-
field approaches that we discuss in Sec. 4 and Sec. 7, respec-
tively.

Besides flow visualization by means of topology-based
methods, there exist other approaches not covered in this ar-
ticle, such as dense and texture based and feature based flow
visualization. For surveys on these areas of flow visualiza-
tion, we refer to Laramee et al. [LHD∗04] and Erlebacher et
al. [EJW05], respectively Post et al. [PVH∗03,LHD∗04]. Yet
another class of approaches are so-called integration-based
methods. Since topology-based methods are usually based
on integrational objects, a fair share of approaches presented
there are contained in this class. If no topology is extracted,
but the integrational objects are directly used for visualiza-
tion, we refer to integration-based geometric methods for
better distinction. For further discussion of this subclass of
methods we refer to McLoughlin et al. [MLP∗10].

2. Classical Vector Field Topology

This section gives a brief overview on both historical and
theoretical aspects of classical, i.e., steady, vector field topol-
ogy as well as its application in visualization and further ap-
plications.

2.1. History

The theory of dynamical systems goes back to the 19th cen-
tury work of Henri Poincaré [Poi92]. A modern introduction
can be found, e.g., in Guckenheimer and Holmes [GH83].
In our context, the case of deterministic, continuous, and au-
tonomous dynamical systems is most interesting, since such
systems can be used to formulate velocity fields of a steady
fluid flow. Many patterns in a flow can be described and an-
alyzed by concepts from dynamical systems theory, such
as critical points, separatrices and periodic orbits. Perry
and Chong [PC87] give a comprehensive overview of such
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Figure 3: A topology-based visualization of a 2D vector field. In turn, the critical structures are highlighted: (a) critical points,
(b) separatrices emerging from the critical points and (c) a periodic orbit. Arrowheads have been added in order to indicate
attracting or repelling behavior and hence the categorization of the respective structures. A few additional trajectories enhance
the perception further.

2D and 3D flow patterns. Helman and Hesselink introduced
these methods to the scientific visualization community, and
used them under the notion of vector field topology for the
visualization of computed and measured velocity fields, first
in 2D [HH89] and later in 3D [HH91]. Vector field topol-
ogy was further popularized both by Asimov’s excellent tu-
torial [Asi93] and by Globus et al.’s TOPO module [GLL91]
for NASA’s FAST visualization software. Over two decades,
topologically-based flow visualization has been an active re-
search topic. A related state-of-the-art report [LHZP07] was
published in 2007.

2.2. Background

Let v(x) denote a steady velocity field. Then a stream-
line, i.e., the solution of the initial value problem given
in equation (1), exists uniquely if v(x) is Lipschitz-
continuous [GH83], which is the case for discrete data when
interpolated with any of the popular schemes. Vector field
topology now deals with the two kinds of singular stream-
lines, namely stationary points and periodic orbits. These
singularities are of particular interest if they are isolated. A
sufficient condition for an isolated stationary point, called a
critical point, is that the velocity gradient tensor is regular at
this point (while its velocity is vanishing). Similarly, a pe-
riodic orbit is isolated if the gradient tensor of the Poincaré
map is regular [GH83]. For these first-order singularities, a
type classification can be made by analyzing the eigenvalues
of the gradient tensor. For 2D vector fields, there are the five
possible types saddle, node source, node sink, focus source
and focus sink, plus transitional types which are structurally
unstable, see Fig. 2. In the special case of a divergence-free
2D vector field, there are no sources or sinks, but instead the
center is a structurally stable type.

Type classifications exist also for first-order critical points
in 3D fields and for first-order periodic orbits in 3D
fields [Asi93]. Finally, higher-order singularities can be fur-
ther analyzed. Depending on higher-order derivatives, the
singularity (critical point or periodic orbit) can still be an
isolated one. A classification of higher-order critical points
in 2D is given by Firby and Gardiner [FG82]. Scheuermann

et al. [SHK∗97] introduce a visualization of higher-order
critical in 2D points using locally higher-order polynomial
interpolations, based on the index of the singularities.

2.3. The topological skeleton of a vector field

The topological skeleton is obtained by computing all singu-
larities plus their lower-dimensional invariant manifolds. In
2D fields only the saddle type critical points have 1D invari-
ant manifolds. These are the so-called separatrices, i.e., the
streamlines converging in either positive or negative time to
a saddle point. As the topological skeleton contains most of
the topological information of a (steady) vector field, it is a
concise characterization of the vector field. The separatrices
divide regions of different flow behavior and they often have
physical relevance. In 3D velocity fields, such topological
structures – then being surfaces – can indicate phenomena
like flow separation or vortex axes.

Roughly speaking, the computation of the topological
skeleton consists of the following steps:

1. Computation of critical points: Find all x such that
v(x) = 0. Notice that this means that the right hand side
of the differential equation becomes zero and the solution
is consequently constant.

2. Classify the critical points: Due to v(x) = 0 the local
behavior of the vector field is dominated by the gradi-
ent of the field (cf. Taylor series expansion). Hence, an
eigenvalue analysis of the gradient can classify the flow
locally. The signs of the eigenvalues are used to detect
attracting, repelling, or saddle-like behavior.

3. Compute the separatrices: The invariant manifolds are
computed by integrating from the critical point in the
direction of the elements of a basis of the respective
eigenspace (i.e., along the direction of the corresponding
eigenvectors).

4. Compute higher order critical structures: Such structures
are, e.g., closed orbits.

5. Classify the higher order critical structures: Analogous
to critical points, higher order critical structures can be
attracting, repelling, or induce saddle-like behavior.
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Then, the topological skeleton is the union of critical points,
respective separatrices, and higher order critical structures.
Figure 3 shows the above described structures in a topology-
based visualization of a 2D vector field. This description is
intended to provide the reader with an intuitive understand-
ing of how to extract the topological skeleton. For more de-
tails the reader may refer to Asimov [Asi93].

2.4. Visualization methods based on vector field
topology

A considerable amount of research has been done to extract,
analyze, modify and visualize the topology of steady vec-
tor fields. Several approaches can be used to extract criti-
cal points. In piecewise linear fields, the zeros can be com-
puted explicitly. In more general settings, one might use a
Newton-Raphson approach [Kel03]. An octree-like method
is presented by Mann et al. [MR02]: they compute the index
of the vector field (a generalization of the winding number)
for each cell and a non-zero index triggers a recursive subdi-
vision. Trotts et al. [TKH00] introduce the notion of critical
points at infinity to find new separatrices. The curvature of
streamlines in the proximity of critical points is studied by
Theisel and Weinkauf [The95, WT02] for 2D and 3D vector
fields. Mahrous et al. [MBS∗04] present an algorithm to ex-
tract separation surfaces to segment topologically steady 3D
flow. They sample the vector field by streamlines, deriving
a segmented data set from the original field and using this
data set for the construction of the separation surfaces. In
a later paper Mahrous et al. present an improved algorithm
[MBHJ03] that uses inflow/outflow matching, cell-locking,
and adaptive streamline sampling to reduce computational
work. Regions of different flow behavior on the boundary
of 2D vector fields as well as the corresponding separatrices
are considered by de Leeuw and van Liere [dLvL99a] and
Scheuermann et al. [SHJK00].

A first approach to detecting periodic orbits is given by
Wischgoll and Scheuermann [WS01] which uses the under-
lying grid structure of a piecewise linear vector field: each
grid cell is analyzed concerning the re-entering behavior of
streamlines that start at its boundaries. Figure 4(a) shows re-
sults obtained by this method. The method is extended to
3D [WS02] by the same authors.

Löffelmann et al. [LKG98] propose visualization tech-
niques for the Poincaré map in order to give a better un-
derstanding of the flow near periodic orbits. Peikert and
Sadlo discuss periodic orbits in 3D vector fields [PS07]. Li
et al. [LVRL06] discuss how to represent higher-order criti-
cal points on triangular surfaces using a carefully chosen tri-
angulation and interpolation. Scheuermann et al. [SHK∗97,
SKMR98] explained visualization approaches for planar
flows. An algorithm for computing 2D invariant manifolds
of singularities in 3D vector fields is presented by Krauskopf
and Osinga [KO99] where the surface mesh is organized in
geodesic circles. Theisel et al. [TWHS03] propose to display

only pairwise intersections of such streamsurfaces, known as
saddle connectors or heteroclinic orbits. Figure 4(b) shows
saddle connectors in a flow behind a circular cylinder. Peik-
ert and Sadlo [PS09b] present a streamsurface algorithm that
robustly handles starting from and converging to singulari-
ties.

Separation and attachment lines play an important role
considering the flow around and on bodies in 3D flow fields.
Kenwright [Ken98] and Kenwright et al. [KHL99] present
methods to extract attachment and separation lines. Wiebel
et al. [WTS09] present a robust method to extract separation
surfaces from these lines using topology extraction in cross
sections of the flow.

Sadlo and Weiskopf [SW10] present an approach to time-
dependent 2D vector field topology based on generalized
streak lines, i.e., streak lines with a moving instead of a fixed
seed point. This allows them to give a generalized defini-
tion of saddle-type critical points for unsteady flow. This ap-
proach is inspired by Lagrangian coherent structures, that
are treated in Sec. 4, but avoids ridge extraction.

While the topological skeleton usually provides complete
information about the qualitative behavior of a flow, no
quantitative information can be reconstructed from it. Löf-
felmann et al. [LDG98] and Löffelmann and Gröller [LG98]
propose the use of selected direct visualization cues in or-
der to provide an intuitive description of the local flow near
characteristic structures.

In order to account for uncertainty in vector fields, Otto et
al. [OGHT10] present the concept of uncertain vector field
topology for two dimensional fields. This approach consid-
ers the transport of local uncertainties under integration, gen-
eralizing the concept of streamlines for probability density
distribution functions. Together with the generalization of
the concept of critical points, this allows for a topological
analysis of the uncertain vector field. Otto et al. [OGT11]
extend the method in the previous paper to 3D. Furthermore,
they improve the integration accuracy and simplify the task
of saddle point detection. The topological structure found is
displayed using volume rendering.

2.5. Further applications of topological features

As described by Theisel et al., topological features of vec-
tor fields have not only proved to be a valuable visualization
tool, they can also be used for other tasks in processing vec-
tor fields [TRW07].

Compressing vector fields. To simplify and compress large
and complex flow data sets, methods based on topologi-
cal concepts allow for more efficient computational han-
dling and transmission. Compression in this context means
to reduce the amount of data while maintaining impor-
tant structures. Lodha et al. [LRR00, LFR03] introduce a
compression technique for 2D vector fields which prohibits
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(a) (b)

Figure 4: (a) Periodic orbits detected in a turbulent 2D flow field (image courtesy of Wischgoll et al. [WS01] © 2001 IEEE);
(b) Visualization of saddle connectors in a flow behind a circular cylinder (image courtesy of Theisel et al. [TWHS03]
© 2004 IEEE).

strong changes of location and Jacobian matrix of the critical
points. Theisel et al. [TRS03b] present an approach which
guarantees that the topology of original and compressed vec-
tor field coincides both for critical points and for the connec-
tivity of the separatrices. It is shown that even under these
strong conditions high compression ratios for vector fields
with complex topologies are achieved.

Topological simplification of vector fields. The topologi-
cal skeleton of a vector field may become very complex due
to the presence of noise. The reduction of unimportant topo-
logical features can be accomplished by simplifying the re-
sulting topological structure. Besides smoothing of the vec-
tor field using a box filter before extracting the topology
as described by de Leeuw et al. [dLvL99b], more involved
techniques start with the original topological skeleton and
repeatedly apply local modifications of the skeleton and/or
the underlying vector field in order to remove unimportant
critical points. De Leeuw and van Liere [dLvL99a] extract
the topological skeleton and measure the importance of a
critical point by computing the area from which the trajec-
tory ends in forward or backward integration. Based on this
area metric, the unimportant critical points are repeatedly
collapsed to more important critical points in the neighbor-
hood. The system described by de Leeuw et al. [dLvL99b]
finds couples of first order critical points in the skeleton by
considering distance and connectivity of them. Then, pairs
of saddle points and attracting/repelling critical points with
distance less then a given threshold are collapsed. Tricoche
et al. [TSH01a] use a similar approach but provide a way
of consistently updating the underlying vector field instead
of collapsing the extracted skeleton. Further, the simplifica-
tion of the topology of a 2D vector field is accomplished by
replacing clusters of first order critical points with a higher
order critical point. Weinkauf et al. [WTS∗05] extend this to
3D vector fields. Theisel et al. [TRS03a] solve the coupling
problem of critical points by a feature flow field approach
which will be explained in section 5.2 in further detail.

Topological comparison of vector fields. The definition of
useful metrics on vector fields plays a crucial role in the ma-
jority of applications mentioned above. The first approaches
on metrics (distance measures) of vector fields as proposed
by Heckel et al. [HWHJ99] and Telea et al. [TvW99] con-
sider local deviations of direction and magnitude of the flow
vectors in a certain number of sample points. These distance
functions give a fast comparison of the vector field but do not
take any structural information of the vector fields into con-
sideration. A first approach to define a topology based dis-
tance function is given by Lavin et al. [LBH98]. Given two
vector fields v1 and v2, all critical points are extracted and
coupled. Then the distance of the vector fields is obtained as
the sum of the distances of the corresponding critical points
in v1 and v2. To compute the distance between two critical
points, a number of approaches exist [LBH98, TW02]. To
couple the points, Theisel et al. [TRS03c] propose the use of
feature flow fields. A general demonstration of this compar-
ison on real data sets is given by the same authors [TRW07].

Constructing vector fields. Besides using a simulation
or measurement process for data acquisition the vector
field data can also be obtained by construction. Theisel et
al. [The02] present an approach oriented at methods from the
CAGD (Computer Aided Geometric Design) context. First,
a topological skeleton of a vector field is constructed by a
number of control polygons. Second, a piecewise linear vec-
tor field of exactly the specified topology is automatically
created. An approach for constructing 3D vector fields is
presented by Weinkauf et al. [WTHS04]. There, a number
of specified control polygons is used to determine location
and characterization of first or higher order critical points
and the saddle connectors. The resulting skeleton is used to
construct a piecewise linear vector field. In application to 3D
surfaces, topology-based construction and editing of vector
fields can be used to enrich surfaces with additional infor-
mation. Thus vector fields have been used for generating
non-photorealistic visualizations, like painterly renderings
or pen-and-ink visualizations, and remeshing of the under-
lying surface [PZ07]. Zhang et al. [ZHT07] present a system
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to interactively create and edit 2D static vector field which
can be applied to the limited domain of a 3D surfaces Re-
cently, topological methods have been successfully applied
to extract salient features on discrete 3D surfaces as shown
by Weinkauf et al. [WG09].

3. First Approaches towards Unsteady Flow Fields:
Tracking of Topology

First attempts to cope with time-dependent velocity fields
were done by looking at the instantaneous velocity fields.
Taking this as a starting point, some extensions to classical
vector field topology are available. Newer research shows
the limitations of this approach, e.g., with respect to a mean-
ingful interpretation of the results.

3.1. Tracking of singularities

Instantaneous topology extraction can be combined with
tracking of the singularities over time. Tricoche et
al. [TSH01b, TWSH02] present a method for tracking the
location of critical points and detecting local bifurcations,
i.e., qualitative changes in the topology of the field due to
a smooth parameter change, such as fold bifurcations and
Hopf bifurcations. This approach works on a piecewise lin-
ear 2D vector field and computes and connects the critical
points on the faces of a prism cell structure, which is con-
structed from the underlying triangular grid. An extension to
3D has been given by Garth et al. [GTS04] together with a
visualization of the paths in space-time of the critical points.
The framework of feature field flows allows for tracking of
singularities as well. A detailed discussion of this tool is
given in Section 5.2.

The consideration of bifurcations has to be handled care-
fully in this context. Bifurcations in the topological struc-
ture of a flow field can only happen due to changes of ex-
ternal flow parameters. To a certain degree, time can be seen
as such a parameter when a streamlines-based view on the
flow is adopted. However, due to the lack of an immedi-
ate physical interpretation of streamlines-based topology in
time-dependent flow, it remains questionable how expressive
the resulting structures are. In flow with a structure that only
changes slowly over time it is possible that the identified
‘bifurcations’ indeed hint on interesting changes in the flow
over time.

Wischgoll et al. [WSH01] track closed streamlines over
time by applying a contouring and connecting approach. At
each time step closed streamlines are detected independently
of each other, then the corresponding lines in adjacent time
steps are connected.

3.2. Deficiency of vector field topology for unsteady flow

As previously explained, streamlines do not capture the tem-
poral change of the flow. In the context of experimental

flow visualization, researchers noted very early that a cor-
rect frame of reference is important for extracting meaning-
ful structures. Perry and Tan [PT84] suggest to extract pat-
terns as ‘seen’ by an observer who is moving with the ed-
dies, i.e., the swirling and backflow induced by flow past an
obstacle. They use a correlation technique to compute the
velocity of an eddy and found the resulting measurements to
be quasi-steady. Later, Perry and Chong [PC94] state clearly
that topological information is only meaningful in a Galilean
reference frame in which the velocity field is nearly steady.
This implies that vector field topology is not applicable if
such a frame does not exist.

While known in theory, practice largely ignored this prob-
lem until when Shadden et al. [SLM05] give with the ‘double
gyre’ an example of an unsteady flow for which a saddle type
critical point substantially deviates from the actual point of
flow separation. Recently, Wiebel et al. [WCW∗09] demon-
strate the failure of vector field topology to find moving at-
tractors in simulation data of a rotating liquid suspension.
They suggest a procedural solution based on the evolution
of density of virtual particles seeded in the flow.

4. Lagrangian Methods

In the Lagrangian point of view, the fluid is described by the
motion of its particles. Since the analysis is based on trajec-
tories of one or multiple particles such methods are inher-
ently suited for unsteady flows.

4.1. The Finite-Time Lyapunov Exponent

The finite-time Lyapunov exponent (FTLE), by some au-
thors also referred to as the direct Lyapunov exponent
(DLE) [Hal01], is a measure for the stretching of an infinites-
imal neighborhood along a finite segment of a flow trajec-
tory.

More formally, let v(x, t) denote the velocity field. Then,
a trajectory x(t) starting from x0 at time t0 is the solution
of an initial value problem (see also Equation 2). The set of
all trajectories provides the flow map x(x0, t0, t) that maps
the position at time t on the trajectory started at time t0 from
x0. By computing the flow map gradient and left-multiplying
it with its transpose, the (right) Cauchy-Green deformation
tensor field [Mas99] is obtained as

Ct
t0(x0) =

[
∂x(x0, t0, t)

∂x0

]T [
∂x(x0, t0, t)

∂x0

]
. (5)

From this, the (maximum) FTLE is defined as

FTLEt
t0(x0) =

1
2(t− t0)

lnλmax
(
Ct

t0(x0)
)
, (6)

where λmax(M) denotes the maximum eigenvalue of
M [Hal01].

In the limit t → t0 the FTLE is the maximum principal
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critical point
FTLE ridge

(a) (b) (c)separation repulsion& FTLE ridges

Figure 5: Applications of FTLE to visualization. (a) In the double gyre example the critical point disjunct to the FTLE ridge
separating different regimes of the flow (image created following Shadden et al. [SDM06]). (b) Volume rendering of the FTLE
field shows the regions of locally maximally attracting and repelling behavior (image courtesy of Garth et al. [GGTH07]
© 2007 IEEE). (c) Extraction of ridges from the FTLE field allows additional processing and filtering to concentrate on the
salient features of the flow (image courtesy of Sadlo et al. [SP07] © 2007 IEEE).

(a) (b)

Figure 6: Analysis of a vortex ring. (a) Topological methods can benefit from the infinite integration time available and give
detailed insight into regions of stability and folding structures of the flow (image courtesy of Peikert et al. [PS09a]). (b) Even
though much less integration time is available, the FTLE field can give insight into the structure of the vortex ring (image
courtesy of Shadden et al. [SDM06]).

rate-of-strain, i.e., the maximum eigenvalue of the rate-of-
strain tensor

S = [∇v(x0, t0)]
T [∇v(x0, t0)] . (7)

In the limit t→∞, the FTLE is the (standard) Lyapunov
exponent which is independent of t0. Discovered by A. M.
Lyapunov in the 1890’s, the Lyapunov exponents became
popular in the 1970’s for the analysis of chaos and pre-
dictability in dynamical systems. The finite-time variant are
used [GSO87,YN93] originally also for predictability of sys-
tems, especially for atmospheric models. In a seminal pa-
per [Hal01], Haller applies FTLE to velocity fields of fluid
flow and reveals their relationship to the Lagrangian coher-
ent structures (LCS), which can provide the information on
flow separation similar to the separatrices of vector field
topology, however often also correctly for strongly time-
dependent flow. In his subsequent paper [Hal02], he iden-
tifies the ridges of the FTLE as LCS. In Figure 5 we show
some applications of FTLE.

Shadden et al. [SLM05] apply FTLE to the ‘double gyre’

example (where vector field topology fails) and various other
example flow fields in 2D. They show visually that particles
seeded near the FTLE ridges do not cross them. Another
counter-example for vector field topology is suggested by
Wiebel et al. [WCW∗09] where the FTLE peak was shown
to deviate much less from the observed (moving) attractor
than the topological sink.

Garth et al. [GGTH07] present an algorithm for FTLE
computation in transient flow using adaptive refinement of
the flow map and propose to approximate 3D FTLE by 2D
FTLE computed in the orthogonal space of the velocity vec-
tor. Garth et al. propose a volume rendering approach that
avoids the extraction of ridges using a 2D transfer func-
tion [GLT∗09]. With a variation of this technique Garth et
al. [GWT∗08] compute 2D FTLE on offset surfaces of solid
boundaries resulting in a visualization of flow separation and
flow reattachment. Sadlo et al. address the problems of effi-
cient computation of height ridges of FTLE [SP07] and of
tracking FTLE ridges over time by using a grid advection
technique [SP09a]. Lipinski and Mohseni [LM10] present
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a ridge tracking algorithm for FTLE fields that uses both
temporal and spatial coherency of LCS and give an error
estimator for difference between advected ridge and actual
LCS. Both approaches give great speed-up compared to the
standard algorithm.

Apart from a more effective ridge extraction, several au-
thors recently suggested alternative methods to speed up
FTLE computation. Brunton and Rowley [BR10] present
a fast computation scheme for the FTLE field based on a
multi-stage approximation on the flow map, eliminating re-
dundant integrations. This comes with an accuracy trade-
off, for which the authors provide an error bound. This ap-
proach is especially useful for the computations of time-
sequences of FTLE fields. A similar approach is presented
by Hlawatsch et al. [HSW10]. Kasten et al. [KPH∗09] in-
troduce the notation of localized FTLE (L-FTLE). The main
idea of this approach is to exchange the deformation gra-
dient tensor with a matrix that accumulates the separation
behavior along a path line. The computation of the matrix is
based on the flow gradient. The computation of the L-FTLE
field allows for the reuse of values computed for previous
time steps, using an idea similar to FastLIC, which results in
a speed-up compared to traditional FTLE. A comparison of
FTLE and L-FTLE shows few differences [KPH∗09].

Comparisons of FTLE with other criteria in terms of suit-
ability for visualization have been made by several authors.
Shadden et al. [SDM06] show that FTLE is able to reveal the
fine lobes of a chaotic vortex ring while producing tempo-
rally more consistent results than an approach based on vec-
tor field topology. In Figure 6 we compare VFT and FTLE.
In (a) we can see that the possibility to integrate streamlines
into a chaotic region of the flow for very long integration
times allows to extract sharply defined regions of stability.
In Figure 6(b) we can see that the restriction to a finite time
domain is alleviated using FTLE to visualize the structure of
the vortex ring.

In recent studies by Green et al. [GRH07] and Shi et
al. [STW∗08], FTLE is validated against other indicators of
LCS in a number of analytical and numerical flow fields, and
FTLE is found to generate more detail. In a study done by
Sadlo et al. [SP09b], FTLE is shown to extract flow separa-
tion structures, but not the axes or centers of rotating flow. In
comparison with vector field topology, this means that FTLE
provides only partial information. In the example of a spiral
saddle critical point, where vector field topology would give
a 1D and a 2D invariant manifold that can be interpreted as a
vortex axis and a separation surface, only the latter is reliably
detected by FTLE.

Another current limitation of FTLE is that it requires the
choice of a time window, the effect of which has not been
studied sufficiently. Generally, a longer integration time will
produce sharper ridges. On the other hand, this may cause a
larger number of trajectories to leave the flow domain. Tang
et al. [TCH10] show that just stopping the integration at the

boundaries may introduce spurious ridges and suppress true
ridges. The authors develop an algorithm that extends the
given flow field linearly, allowing the paths to continue at a
locked separation rate and addresses the problem of particles
leaving the flow domain.

In recent work by Olcay et al. [OPK10] the influence of
noise and spatiotemporal resolution of the velocity field on
the extracted LCS is investigated. The authors show that a
coarse resolution can significantly influence the location of
a LCS. Smoothing the field is shown to have the same effect.
Spatial noise can have a significant effect on single realiza-
tions of the LCS, but the mean location remains near LCS
extracted from the unperturbed field.

Ferstl et al. [FBTW10] present an approach for interactive
investigation of 3D flows using streak lines, that uses FTLE
ridges in a 2D seeding probe as seeding structures. In this
manner the separation behavior detected by the FTLE can
be investigated in more detail, avoiding costly computations
in regions that exhibit coherent particle motion. Depending
on the size of the data set, the FTLE can be computed on the
fly, exploiting the GPU, or has to be precomputed.

It is worth noticing that the result of LCS extraction based
on FTLE is influenced by the definition of a ridge, given
the choice of height ridges, watersheds, maximal curvature
ridges [Ebe96] and others. Even when agreeing on the same
concept of ridge, the definition may not be unanimous, as in
the case of height ridges [SP07].

4.2. Other Lagrangian Feature Detectors

While FTLE, in addition to its advantages, also has the afore-
mentioned limitation to inform only about flow separation,
other calculations can be performed in the Lagrangian frame
that reveal other types of flow features. Basically, by com-
puting the Cauchy-Green deformation tensor from the flow
map gradient, the rotational part is discarded. However, to
detect a vortex, this information is needed. Therefore, either
the flow map gradient must be used in a different way or a
different type of temporal integration must be performed.

Cucitore et al.’s non-local vortex detector [CQB99] uses
a reference frame that moves with a particle to be tested. In
this frame, the path of a neighbor particle is calculated for
a certain time window. Then, the distance of the end point
from the origin is divided by the arc length of the path. Low
values of this ratio indicate a vortex center. Haller proposes
another vortex detector denoted Mz [Hal05] that is objective,
i.e., invariant not only under Galilean transforms, but also for
rotating frames of reference. Finally, any local vortex detec-
tor designed for steady flow can be adapted to unsteady flow
by applying a Lagrangian smoothing, i.e., by computing a
weighted average of the quantity obtained for the same par-
ticle at several time steps. Lagrangian smoothing has been
shown to be better than a purely steady analysis by Shi et
al. [STH∗09] and by Fuchs et al. [FPS∗08].
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Recently, several authors brought up the idea to adapt the
definitions underlying vector field topology for unsteady ve-
locity fields. Kasten et al. [KHNH09] propose minima of
the acceleration magnitude, after a temporal smoothing in
the Lagrangian frame, as a replacement for critical points in
unsteady velocity fields. Fuchs et al. [FKS∗10] present the
concept of motion compensated critical points and a novel
measurement for ’unsteadiness’. This allows for the identi-
fication of particles that are observing an almost steady ve-
locity field and represent a nearly Galilean transform. In this
frame of reference, classical VFT is applicable to classify the
particles. This can be considered to be a first step towards a
’Lagrangian’ vector field topology.

5. Space-Time Domain Approaches

In order to be able to handle the problem of detecting fea-
tures in time-dependent data sets, one way is to lift this
problem into a higher dimension by interpreting the time
as an additional axis and thereby assume the steady case
again. This definition allows a clear definition of pathlines by
means of streamlines in the lifted higher-dimensional case.

5.1. Streamlines and Pathlines

When dealing with a time-dependent vector field v(x, t), we
are usually interested in its spatiotemporal characteristics.
As discussed in the introduction, several concepts can be
used to explore those characteristics. In a specified space-
time point (x0, t0) ∈ D we can start a streamline (cf. eq.(1))
or a pathline. The defining ODE system (2) can be rewrit-
ten as an autonomous system at the expense of an increase
in dimension by one, if time is included as an explicit state
variable:

d
dt

(
x
t

)
=

(
v(x(t), t)

1

)
,

(
x
t

)
(0) =

(
x0
t0

)
In this formulation space and time are dealt with on equal
footing, facilitating the analysis of spatio-temporal features.
Pathlines of the original vector field v in ordinary space now
appear as streamlines of the vector field

p(x, t) =
(

v(x, t)
1

)
(8)

in space-time. To treat streamlines of v, one may simply use

s(x, t) =
(

v(x, t)
0

)
. (9)

This is valid for arbitrary space dimensions.

Figure 7 illustrates s and p for a simple example vector
field v. It is obtained by a linear interpolation over time of
two bilinear vector fields.

Now the problem of finding a streamline or pathline ori-
ented topology is reduced to finding the topological skele-
tons of s and p. Unfortunately, the classical vector field

topology extraction techniques for 3D vector fields are not
applicable for the fields s or p: s consists of critical lines
(i.e., for every critical point x∗ of the original vector field
v any point (x∗, t) in the time-space domain will become a
non-isolated critical point of s), while p does not have any
critical points at all.

5.2. Feature Flow Fields

In the feature flow field (FFF) approach [TS03], a specially
designed vector field in the 4D space-time domain captures
parts of the topological information (critical points, periodic
orbits, vortex axes) in its temporal evolution. Consider an
arbitrary point x known to be part of a feature in a (scalar,
vector, or tensor) field. A feature flow field f is a well-defined
vector field at x pointing in the direction where the feature
moves to. Thus, starting a streamline integration of f at x
yields a curve where all points on this curve are part of the
same feature as x.

Feature flow fields are commonly used with local features,
which can be described by a local analysis of the underlying
field and possibly its derivatives. Here, f can usually be de-
scribed by an explicit formula. In the 2D case the underlying
vector field is given as follows:

v(x,y, t) =
(

u(x,y, t)
v(x,y, t)

)
(10)

Using this description, the direction of maximal change of
the u and v-component of v is given by the gradients grad(u)
and grad(v). In the plane perpendicular to grad(u) the u
component remains constant in a first order approximation
of v. A similar statement can be made for v. Thus, the only
direction in which u and v remain constant is the intersection
of the perpendicular planes denoted by the cross product of
grad(u) and grad(v):

f(x,y, t) = grad(u)×grad(v) =

 det(vy,vt)
det(vt ,vx)
det(vx,vy)

 (11)

In contrast to this, a FFF for a global feature can only be
given in an implicit manner, since it can neither be decided
locally whether a point belongs to a feature nor into which
direction the feature evolves. Instead, the FFF approach has
to be tightly coupled with a global feature detection strategy
in order to assess global features.

Tracking features in time-dependent fields is one of the
main applications of feature flow fields [TS03, TWHS04,
TWHS05]. The temporal evolution of the features of v is
described by the streamlines of f. In fact, tracking features
over time is now carried out by tracing streamlines. The loca-
tion of a feature at a certain time ti can be obtained by inter-
secting the streamlines with the time plane ti. Integrating the
streamlines of FFF in the forward direction does not neces-
sarily mean to move forward in time. In general, those direc-
tions are unrelated and the direction in time may even change
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(a) Stream lines of s correspond to
the stream lines in v.

(b) Stream lines of p correspond to
the path lines in v.

(c) Streamline oriented topology (d) Detail view with a saddle con-
nection and a fold bifurcation

Figure 7: Streamlines (a) and pathlines (b) of a simple 2D time-dependent vector field obtained by linear interpolation of two
steady 2D vector fields and shown as illuminated field lines. The extracted and visualized topological skeleton (c) and detailed
structures (d) of the cavity data set (image courtesy of Theisel et al. [TWHS05] © 2005 IEEE).

along the same streamline. Those changes are always related
to special events, where multiple critical points merge, split
up or vanish within the underlying vector field. Hence, FFF
provides a tool to localize, characterize and classify bifurca-
tions. Notice that the notation of bifurcation implies that the
flow is interpreted from the streamline-based point of view.

Besides tracking, FFF have been used for a variety of re-
lated problems. Those include topological simplification and
comparison of vector fields based on critical point track-
ing [TRS03b], extraction of vortex core lines defined as
ridges/valleys of Galilean invariant quantities [SWH05], ex-
traction and tracking of vortex core lines defined as cen-
ters of swirling motion [TSW∗05], extraction of topological
lines in tensor fields [ZP04,ZPP05], and identification of pe-
riodic phenomena from insufficiently time-resolved data sets
measured using particle image velocimetry [DLBB07].

Weinkauf et al. [WTGP10] introduce the notion of stable
FFF, i.e., FFF where streamlines associated with the desired
feature exhibit attracting behavior. This formulation guaran-
tees that small numerical errors are automatically corrected
during integration. The authors show the construction of
such fields for two common applications of FFF: the tracking
of critical points in a time-dependent 2D vector field and the
extraction of parallel vector lines for 3D vector fields. This
stable variant has been applied recently to identify disconti-
nuities in multivariate data by tracking feature lines [LT10].

Weinkauf and Theisel [WT10] introduce the so-called
steak line vector field, that allows for the formulation of
streak lines as tangent curves of a derived vector field of the
original field. In this manner, the costly computation of a
streak line can be reduced to a simple vector field integra-
tion. Hence, this reformulation of streak lines opens up for a
more extensive use of streak lines and surfaces in flow visu-
alization.

6. Local Methods

Features such as edges or ridges [Har83, EGM∗94, Lin98]
of images can be extracted by methods that are local in the
sense that they work on point-wise information, including
derivatives. These methods carry over naturally from image
data to scalar field data as they occur in scientific visualiza-
tion problems. Height ridge extraction is applied to pressure
data by Miura and Kida [MK97] and to vorticity magnitude
by Strawn et al. [SKA98], both times for finding vortex core
lines. Ridge extraction from FTLE data is proposed by Shad-
den et al. [SLM05] for finding Lagrangian coherent struc-
tures.

For the visualization of vector fields such as velocity
data, adaptations or generalizations of these methods can be
used. Such techniques exist for the extraction of separation
and reattachment lines [KHL99], vortex core lines [LDS90,
SH95, BS95, MK97, RP98]. Some of these vortex core line
methods involve additional physical quantities, in particular
the pressure gradient [BS95,MK97], but the remaining ones,
such as the classical methods by Levy et al. [LDS90] and by
Sujudi and Haimes [SH95] are based solely on the veloc-
ity field and its derivatives. For a detailed discussion of the
topic of vortex extraction, we refer to the survey of Jiang et
al. [JMT05].

Many of these structures can be expressed with a
unifying formalism, called the parallel vectors operator
(PVO) [PR99]. The PVO concept is not restricted to line-
like features, but can be extended to surface-like fea-
tures [TSW∗05]. For the case of height ridges, simplified
extraction methods were recently proposed for arbitrary di-
mensions, together with a new class of filters for the filtering
of raw features [PS08].

In contrast to integration-based methods, local methods
are relatively unaffected by the unsteadiness of the velocity
field. Therefore, most of the mentioned methods are directly
applicable to unsteady flow. An exception is the recent ex-
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(a) (b)

Figure 8: (a) Flow past a tapered cylinder visualized using a non-local vortex detector (image courtesy of Reinders et
al. [RSVP02]); (b) Visualization of the core of swirling particle motion in the Hurricane Isabel data set (image courtesy of
Weinkauf et al. [WST07] © 2007 IEEE).

tension of the vortex core line detector of Sujudi and Haimes
to unsteady flow [WST07,FPH∗08]. The reason for this was
that the Sujudi and Haimes method can be re-interpreted as
an operation on the acceleration field. If this is computed
from a given unsteady velocity field, it requires a temporal
derivative term, which is not needed in the steady case.

The general approach of defining and extracting features
based on local criteria for the velocity field and its deriva-
tives is a powerful concept, due to its mathematically rig-
orous formulations and the simple algorithms derived from
them. At first glance, it may look wrong to describe global
structures of a vector field by local operators. In fact, the
different behavior of height ridges and watersheds in im-
age data led to a lively dispute [KvD93, Ebe96] about the
correctness of local vs. global methods. However, while in
steady flow one of the most interesting topological struc-
ture, the separatrix, can be computed only using global
methods, there is no reason to assume that unsteady flow
does not contain topologically important structures that can
be found by local methods. In a related context, Ginoux
and Rossetto [GR06] show that in 2D and 3D slow-fast
autonomous dynamical systems, the slow manifold can be
computed by finding zeros of curvature or torsion, resp., of
the local trajectory. Finally, local methods can be combined
with integration-based methods. An example is FTLE com-
putation which leads to a scalar field and which has to be
post-processed if sharp structures, such as height ridges, are
needed.

Although the problem of detecting vortices is usually
addressed using local methods as described above, there
are methods that use a geometric approach. Sadarjoen and
Post [SP99] suggest two methods detecting vortices in
steady 2D flow fields detecting clusters of centers of the
osculating circles and streamlines with winding number 2π

and relatively close start and end point. The latter method
is extended to 3D by Reinders et al. [RSVP02]. Petz et
al. [PKPH09] propose a new criterion to characterize 2D vor-
tex regions. In order to do so, they detect and cluster loops
that intersect the underlying flow at a constant angle. Their

algorithm is parameter-free and is not restricted to a certain
type of geometry (e.g. star domains or convex domains).

Figure 8 shows visualizations of vortical flow using local
(8(b)) and non-local (8(a)) detectors.

7. Stochastic and Multi-Field Approaches

Rarely is the user just interested in one aspect (e.g., one sin-
gle feature type) of a flow field. It is more common to look
at multiple features, features in combination with additional
measures and/or multiple definitions of the same feature at
once to get an understanding of the underlying field. Re-
cently, a number of new approaches and methods have been
introduced in order to take these requirements into account.

7.1. Interactive Visual Analysis

As the amount and complexity of data sets grows, automatic
analysis methods are often not sufficient any more. In or-
der to effectively cope with such data sets, interactive visual
analysis (IVA) tries to balance human cognition and auto-
matic analysis. The power of human perception and cogni-
tion is used to guide the analysis. The IVA approach pro-
vides an interactive discovery framework. It helps the user
in getting insight, in understanding the data as well as com-
plex, often hidden, correlations between certain data dimen-
sions. The visual information-seeking mantra – overview
first, zoom in, details on demand – as defined by Shneider-
man [Shn96], summarizes the main idea. Coordinated multi-
ple views [Rob07] are often used in this domain [MGJH08]
as a proven concept. The main idea is to depict multi-
ple dimensions using multiple views and to allow the user
to interactively select (brush) a subset of the data in one
view and all corresponding data items in all linked views
will be highlighted as well [MW95, DGH03]. One of the
first examples of linking and brushing with different visu-
alization approaches in different views is a system called
WEAVE [GRW∗00], which was used to interactively ana-
lyze and visualize simulated data of a human heart applica-
tion using focus+context visualization [Hau03]. IVA is used

submitted to COMPUTER GRAPHICS Forum (2/2012).



14 A. Pobitzer et al. / Topology-based Unsteady Flow Visualization STAR

(a) (b)

Figure 9: (a) Pathlines with small Lyapunov exponents in a flow behind a circular cylinder. The region to display is selected
in the histogram (upper left window) the corresponding pathlines (upper right display) and their seeding points (lower right
display) are displayed (image courtesy of Shi et al. [STH∗09]); (b) Comparison of the visualization of a flow around a cuboid
using the standard λ2-criterion (left) and local statistical complexity (right) (image courtesy of Jänicke et al. [JBTS08]).

in many domains [KMSZ06]. In the following, however, we
will focus on engineering and scientific applications.

Doleisch et al. developed a system called SimVis for inter-
active feature specification and localization in 3D flow data.
They use simple 2D linked views, such as scatter plots or
histograms, for the specification of flow features. Linked 3D
views provide spatial information and advanced flow visu-
alization techniques. Complex features can be described by
composite brushing. The feature definitions are expressed in
an XML-based feature definition language and are persis-
tent across analysis sessions. The SimVis system has been
used to analyze flows from numerous applications, such as
flow through a catalytic converter, flow around a car, cooling
jacket flows, etc [Dol07, DMG∗05, DMH04, LGD∗05].

Another approach deals with the parameterization of path-
lines in order to understand flow. The main idea is to com-
pute various attributes from pathlines in order to understand
the flow itself. Shi et al. [STH∗09] compute scalar and time
series attributes of pathlines, such as: winding angle, Lya-
punov exponent, direction vector, etc., and then use coordi-
nated multiple views in order to understand the flow behav-
ior. Figure 9(a) shows their interface while analyzing a data
set.

Bürger et al. [BMDH07] compute several local feature de-
tectors of the same flow and use IVA to compare them. In ad-
dition, other flow attributes (such as pressure, ...) are taken
into account as well. In this way it can be intuitively decided
which automatic method gives more accurate results in cer-
tain areas or time intervals. Such an approach enhances the
credibility and combines the advantages of several detectors
in an interactive visual analysis system.

IVA is not intended as a competitor or an alternative to the
detectors described before. Instead, it is sought to be used
in parallel to those methods. It offers great potential in the
exploratory phase, during hypothesis generation [KLM∗08].
The flow segmentation is not an isolated process, it is part of
a larger work flow. Domain experts analyzing the flow have
to choose detectors, and IVA can help in deciding if detectors

are applicable, if a detector functions in particular case. Do-
main experts have to evaluate multiple detectors. Engineers,
for example, compute a vortex detector first, and then check
if this is an area of low pressure as well. The analysis can
be refined for areas where this holds, and can be skipped for
other areas. Offering multiple views, intuitive interfaces and
quick selection possibilities, IVA provides a useful tool for
such a complex task. It can also help to improve robustness
of detectors. A filtering step is almost always necessary after
a detector is evaluated. Exploiting smooth brushing [DH01],
a method which allows non-strict brush boundaries, local
characteristics of detectors can be examined much more eas-
ily. Hauser and Mlejnek [HM03] show how a similar ap-
proach can be efficiently applied to isosurfaces in the analy-
sis of flows in a catalytic converter.

IVA is not really another flow segmentation method – at
least not in the classical sense – but more an integrative ap-
proach which helps domain experts to understand detectors
and flow behavior.

7.2. Fuzzy Feature Detectors

While IVA handles multi-field structures (induced by multi-
ple features, multiple definition of features and/or additional
quantities), utilizing multiple views and linking+brushing,
other attempts have been made to address problems related
to feature extraction and visualization in a fashion that cor-
responds more to the classical methods in flow visualization
with respect to their outputs.

One of the drawbacks of feature extracting methods is
that the user has to be aware of the type of feature which
should be extracted. Additionally, the feature one is look-
ing for may not be defined unanimously (e.g. vortices). In
order to address this problem, Jänicke et al. [JBTS08] re-
cently presented an improvement of the algorithm of Jänicke
et al. [JWSK07] for an automatic extraction and visualiza-
tion of regions of interest in 3D unsteady multi-flow. The
authors detect space-time points that have high probability to
develop into unlikely events in future using a statistics-based
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algorithm. As a measure for the unexpectedness of the value
at a point they propose local statistical complexity, which
is, roughly speaking, the amount of information needed to
predict the future of a space-time point. Figure 9(b) shows
a visualization of a flow around a cuboid obtained by this
method.

Salzbrunn and Scheuermann suggest the use of streamline
predicates in order to combine flow topology with feature
extraction [SS07]. The main idea is to decompose the do-
main into disjoint regions with coherent streamline behavior,
as flow topology does, adding other distinctions than asymp-
totic behavior. This addresses, e.g., the problem that some
features can be split up by usual flow topology. Mathemati-
cally speaking, streamline predicates are Boolean maps with
disjoint support on the set of all streamlines. Flow topology
is then a special case of segmentation gained through stream-
line predicates, called flow structure. Classical feature de-
tectors can be used to refine flow topology using streamline
predicates. The same ideas are applied to unsteady flow by
Salzbrunn et al. [SGSM08]. In analogy to the steady case the
authors introduce the notation of pathline predicates. Addi-
tionally, the authors present a pathline placement strategy
in order to combine the structural overview provided by the
partition gained by means of pathline predicates with the dy-
namical insight into the flow provided by tracing single par-
ticles.

In an engineering context, feature models with parameters
are often used. The quantification of these parameters is ob-
viously an important task. Ebling et al. [EWGS07] point out
that topology-based methods are not capable of doing this.
They show, e.g., that for an arbitrary vector field the topo-
logical skeleton of the normalized field is the same as the
skeleton of the original field. This means that VFT is inher-
ently unable to provide quantitative information on the in-
vestigated flow field. Another drawback of topological meth-
ods in this context is that superposing features may not be
detected correctly. The authors suggest therefore the use of
vector masks and pattern matching. This approach empha-
sizes the interpretation of a vector field as the superposition
of many (simpler) fields.

8. Discussion and Conclusions

This paper describes the current state of the art in topology-
based flow visualization of unsteady vector fields. Topolog-
ical methods for steady flows are used as a role model for
what we expect of new methods. The terminology topology-
based, as used in this survey, has to be interpreted ac-
cordingly, i.e., more loosely, e.g, also including topology-
inspired methods and methods that share one major goal
of topology-based methods, i.e., to achieve an expressive
segmentation of a flow field. Accordingly, by surveying
these approaches together, this report might contribute to ap-
proaches that aim at catalyzing convergence.

To date, the solutions for topology-based unsteady flow

visualization remain incomplete, compared to the level of
proficiency achieved for steady flows. Incremental exten-
sions of methods that work well for steady flows are proven
to be not able to truthfully capture the behavior of time-
varying flows. Therefore new approaches and methods are
examined, including both new theoretical frameworks and
methodical novelties. Many of the new approaches seem
to overlap to a certain extent. This suggests that a unified
framework for treating unsteady flows with topology-based
methods actually could be found.

The impulses that brought topological methods into the
focus of the visualization community came from the appli-
cation domain itself. One of the most prominent examples
is Globus et al.’s TOPO module [GLL91] for NASA’s FAST
visualization software. In the light of this, it may seem sur-
prising that topology-based methods found their way into
commercial solutions only in a very limited form (e.g., by
Avizio, www.vsg3d.com) up to now. One possible reason
for this could be that topology-based methods are still rather
new in the field compared to many other techniques (espe-
cially those inspired by well known experimental setups).
This means, in turn, that such methods are usually not cov-
ered by standard education curricula for simulation experts.
Another reason might be that topological methods are quite
advanced methods and a fair number of questions relevant to
the domain expert can be answered by simpler methods as
well. For more intricate questions, however, topology-based
methods are able to provide insights that are not possible
with other approaches, as recent publications from the fluid
dynamics community show, cf. Peacock and Dabiri [PD10]
for example. In order to be applicable by a broader commu-
nity, these methods will have to be time-efficient and expres-
sive, as well as easy to use. Finally, as many other examples
show, technological advancements may also lead to the us-
age of advanced methods, such as topology-based methods,
in contexts that would not strictly require this. For exam-
ple, topology-based methods might be used for illustration
purpose, in analogy to the illustrations in recent text books
on dynamical systems, or in a particle seeding strategy. One
first step in this direction is the use of FTLE ridges as seed-
ing structures for interactive exploration of 3D flow using
streak surfaces proposed by Ferstl et al. [FBTW10].

We perceive a strong current interest in proceeding with
research on topology-based and topology-inspired visualiza-
tion of unsteady flow and major attempts are being under-
taken, such as the cooperative international project that the
authors of this survey are involved in (www.semseg.eu).
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Krešimir Matković is a senior researcher in VRVis Re-
search Center (www.vrvis.at). He received his PhD from Vi-
enna University of Technology in 1998. He has an especially
strong background in the visualization of simulation data
(from the engineering level up to the first class research).
He is successful in bridging the gap between Information
and Scientific Visualization, and focuses on Visual Analytics
for Engineering Applications recently. His research interests
include virtual reality, human computer interaction, tangi-
ble user interfaces and human perception, as well. He leads
projects which deal with visualization and with human com-
puter interaction in VRVis. Since 2007 Kresimir Matkovic is
also an assistant professor at Faculty of Electrical Engineer-
ing and Computing, University of Zagreb, where he teaches
Virtual Environments.

Helwig Hauser is a professor in visualization at the Uni-
versity of Bergen, Norway (www.ii.UiB.no/vis). He gradu-
ated in 1998 with a PhD degree from Vienna University of
Technology, where he also worked as an assistant professor
until 2000 (www.cg.tuwien.ac.at). Afterwards, he lead a re-
search group on visualization at the VRVis Research Center
in Vienna, Austria, before he became the scientific director
of VRVis in 2003 (www.VRVis.at). His interests are visual-
ization in general and interactive visual analysis, flow visual-

ization, medical visualization, and the combination of scien-
tific and information visualization in particular. He has rich
experience with state of the art reports as also documented
by recent publications in the respective Eurographics pro-
ceedings.

submitted to COMPUTER GRAPHICS Forum (2/2012).


