
An Approach to Quantification and Analysis of
Quality in Distributed Virtual Environments

H. Lally Singh∗, Denis Gračanin†, Krešimir Matković‡
∗Google, New York, United States

†Virginia Tech/Department of Computer Science, Blacksburg, VA 24060, United States
‡VRVis, Vienna, Austria

lally@acm.org, gracanin@vt.edu, matkovic@vrvis.at

Abstract— We present an implementation-independent
methodology for measuring, analyzing, and comparing Dis-
tributed Virtual Environment (DVE) system performance.
The methodology comprises of a process of requirements
elicitation and their conversion into measurable objectives.
The process for determining quality requirements for a
DVE is discussed, with a focus on interaction–based scenario
analysis. A measurement tool is introduced to provide the
low-overhead, high-rate metric data required for measuring
DVEs while running under simulation or production op-
erations. An example measuring a DVE’s primary loop is
presented.

I. INTRODUCTION

Quantified quality is an important topic of interest in
Distributed Virtual Environment (DVE) systems. With
increasing demands for better performance, better scala-
bility, and additional functionality, quantification becomes
a natural component of a system improvement process.
Key concerns within measurable performance objectives
include the number of sustainable users within a given
resource envelope, synchronization facilities to support
specific simulation accuracies, and high-demand collab-
orative interactions.

With all the problems DVE system designers have
to solve, a common subset is present throughout: syn-
chronization and simulation [1], [2]. These activities are
often significant components of a DVE engine’s workload
— driving significant parts of the resource requirements
for operating the system. While we analyze entire DVE
systems, we focus our analysis for these two areas specif-
ically in the hope that the models and instrumentation
points we have built can be reused with minimal effort.

The DVE types have different synchronization systems,
but they have a common structure that we will exploit
in the analysis therein. While some systems may have
different classes of synchronization connections — peers,
clients, identification servers, etc., we believe that they
can be analyzed with the process described in this paper.

Focusing on the most reusable subset of a large family
of systems, we have chosen to focus on client-server DVE
systems. The choice offers both a good demonstration of
the methodology and a good set of reusable results —
more sophisticated topologies will have to do the same
work.

While the process depends on standard algorithm analy-
sis and software engineering techniques, a gap was found
in available instrumentation tools. A new tool, ppt, is

constructed for the low-overhead, high-rate, and high-
precision requirements of DVE analysis.

II. RELATED WORK

While DVE engines simulate physics in discrete time,
other events simultaneously occurring lend them to use
discrete-event simulations internally. These other events
include network and user interface I/O, timeouts, etc.
Using discrete-event simulation, network and input events
may be handled together within a simple framework [3].
Simulations have accuracy requirements unique to their
context, those appropriate for DVEs will be discussed
later in this paper.

Kim et al. [4] specifically discuss and advocate for
incremental development of both VR systems and be-
havioral models of them. They developed a CASE tool
called ASADAL/PROTO that assists in the construction
of message-sequence and data-flow diagrams, as well as
statecharts. Seo et al. [5] performance engineering through
a process they call “LOD Engineering.” In this process,
a budget is determined for the maximum number of
polygons to simultaneously display. Then, the budget is
split into different tiers of Level Of Detail (LOD), with
higher tiers corresponding to objects that have fewer per-
object polygon budgets and less user sensitivity to their
quality.

Robinson [6] provides a high-level methodology for
analyzing the quality of a simulation, in terms of software
engineering and the process of social change:

1) Quality of the Content — How well does the sim-
ulation development process fits with the original
requirements? This includes problem specification,
development of the model and software, experimen-
tation, analysis and reporting.

2) Quality of the Process — How was the simula-
tion work performed? It is discussed in terms of
“the socio-political work” which may include the
relationship between the modeler and customer,
stakeholder confidence, and timeliness of the work.

3) Quality of the Outcome — How useful the work
is within the scope it was done for? This includes
short-term action done as result of the simulation,
and long-term perceptions of the utility of the
results.

Watson et al. [7] evaluate the effects of frame rate on
task performance. The research evaluated both frame rates

and variations in frame rate as dynamic factors affecting
user task performance. The research showed that user
susceptibility to changes in frame rate is higher at lower
frame rates (10 Hz) than at higher ones (20 Hz). At the
higher frame rates, variations “have little or no effect on
user performance” [7] for the types of tasks they used in
the experiment.

For traditional First Person Shooter (FPS) games, Quax
et. al. [8] provide an analysis of the effects of latency
and jitter on user performance, as measured by their in-
game-score in Unreal Tournament 2003. Using a router
that simulated specific latencies and jitters, they found
that users had noticeable impairment when the round-trip-
time (RTT) surpassed 60 ms. Bhatti and Henderson [9]
found that the number of times the player kills per minute
(KPM) dropped from 1.456 KPM to 0.6233 KPM when
lag was artificially introduced. Similarly, the number of
times the player was killed per minute jumped from
0.6042 KPM to 1.430 KPM.

Rolia and Vetland [10] discuss both direct measure-
ment and statistical methods for determining the resource
requirements of distributed applications. Direct measure-
ment is effective, but getting good measurements can
often be very difficult, even more so in heterogeneous
environments. When not possible, the statistical methods
they discuss can be used — assuming that its possible to
get representative input that can drive a good sampling of
the systems usage.

Qin et al. hand-instrument code that sends measure-
ments to a performance data server, which collects and
analyzes the data, building a performance model [11]. In
their example, they instrumented and measured a DCE
application to build a Layered Queue model.

Corwin and Braddock [12] investigate the use of met-
rics in distributed systems, from development through
operations. They examine the values of development met-
rics and models to quantify assumptions, and operational
metrics to assist in adjusting system policies and planning
upgrades.

Benford et al. [13] use a feedback loop of Area of
Interest (AoI) information to determine the best clusters
of data flows. Using these clusters, they continuously
(re)allocate QoS streams to for better DVE performance.
Similarly, Chuang and Wu [14] used adaptive network
QoS monitoring to adjust the coding rate of transferred
MPEG media to maintain a given quality level over the
network.

At the network level, the Internet’s best effort service
is only one of many defined. RFC 2211 [15], allows
for controlled load service, acting as a best effort link
over a lightly loaded link. This reduces loss and jitter
significantly, leading to stochastically stabler performance
for DVE synchronization. The DVE will provide more
predictable performance due to the additional stability in
its synchronization system.

III. PROPOSED APPROACH

We present a process methodology, derived from Soft-
ware Performance Engineering [16] to construct a scalable

DVE system. Specific focus is given to the distinguishing
traits of DVE systems: (1) when the load is steady, the
system runs in a steady-state, continuous form; (2) per-
formance of the system is expected to vary with available
resources, gracefully adjusting as they change; and (3)
large components of the system load are determined by
both the human behavior in its players and the system-
specific artistic assets created to populate the scene graph.

We use three resource estimators as the system perfor-
mance model to manage through the engineering process:
network bandwidth, CPU capacity, and memory (real
available memory) requirement.

Developers may create additional models for additional
resources which may bottleneck during runtime, such as
dedicated hardware (e.g. server-side CUDA GPUs) or
router memory. We believe that the methods used for
determining the three presented are easily transportable
to other resources as needed.

We define a DVE’s scalability as the set of relationships
between the number of logged-in users and the system’s
resources. These relationships are expressed as functions
upon the number of logged-in users.

We also define three categories of models:
1) Load Model that includes the actual values of

variables and the distributions of events coming into
the system at different levels of load;

2) Resource Model that translates the load model’s
values into actual resource requirements (CPU,
memory, network bandwidth), the RR-envelope for
short; and

3) Performance Model that describes the system be-
havior requirements for acceptable performance.
This model often includes: the minimum update rate
to a client for their own state, the minimum rate
for a client to receive updates about objects fitting
various criteria, and the numerical accuracy of the
physical simulation.

The Load Model has separate estimates for each soft-
ware component involved in critical scenarios (Table I).

TABLE I
SYSTEM PARAMETERS

Input Processing Simulation Output
Load(N)=(param inp) (param sim) (param out)
mem(N)=mem(N, param inp)+mem(N, param sim)+mem(N, param out)
cpu(N) =cpu(N, param inp) +cpu(N, param sim) +cpu(N, param out)
net(N) =net(N, param inp) +net(N, param sim) +net(N, param out)

The Resource Model estimates the resource usage ram-
ifications of those components at those loads, and totals
them into a top-level estimate for the system load. The
steps are listed below. We prefix each with a letter denot-
ing which cycle they belong to: (P)reflight, (A)nalysis,
(E)ngineering, and (M)odeling.

1) (P) Assess Performance Risk — Determine what
levels of scalability are desired, and how much
engineering effort it is worth.

2) (P) Identify/Establish Critical Paths — If designing
a DVE from scratch, determine the sort of DVE to

build: a peer to peer system, a client-server system,
or a federated hybrid. If using an existing system,
determine which it is. Once classified, determine
which software components compose the perfor-
mance and scale-critical paths through the software.

3) (P) Identify Critical State — Determine what data
structures are used for the critical paths. Common
examples include the scene graph and any per-client
connection state.

4) (P) Establish Scalability Objectives — Determine
the critical variables that determine load, and what
performance envelope we want the system to exhibit
under that load.

5) (A) Gather Behavior Data — Gather users usage
data to determine how users commonly end up
using the system.

6) (A) Build/Update a Load Simulator — Modify or
re-implement the client software to behave, without
human intervention, representatively like the obser-
vations.

7) (M) Build/Update Models — Construct or update
the load, resource requirement, and performance
models.

8) (M) Evaluate Assets — Analyze the structure of the
artistic assets, to determine their effects on load. For
example, the vertex count of the player’s avatar, to
determine number of comparisons executed during
a collision check.

9) (A,E,M) Instrument Engine — Place instrumenta-
tion into the engine for the load, resource require-
ment, and performance models.

10) (A,E,M) Simulate — Run the load simulator against
the engine, enable instrumentation, and record data.

11) (A,E,M) Evaluate Model — Look at the instrumen-
tation data and determine if the model gives enough
accuracy, if the engine can provide the performance
required, or if it is even objectively feasible to build
such a DVE with the performance requirements.
If the model is insufficiently accurate, go back to
the “Build/Update Models” phase. This back-arc
completes the Modeling Cycle.
If the engine does not perform sufficiently well,
go to the “Update Engine” phase, which will carry
on to “Build/Update Models,” completing the Engi-
neering Cycle. If the DVE itself is infeasible with
current technology, then modify it in the “Update
Engine” phase and go back to “Gather Behavior
Data” for the new DVE. This closes the Analysis
Cycle.
If the models are sufficiently accurate and show
a sufficiently-performing DVE, then no additional
cycle is needed and one may consider the process
DONE.

12) (A) Update Environment — Changes in aspects
discovered during analysis may be needed for the
virtual environment as a whole. For example, it may
be found that there are large open areas where many
players congregate, causing quadratic load on the
collision detection system or sizes of updates to

clients. In such a case, some partitioning of that
space, or motivations for users to go elsewhere,
may be beneficial. After the environment has been
updated, new behavioral data is required, and the
analysis cycle begins it next iteration.

13) (E) Update Engine — With behavioral and instru-
mentation data, some changes may be desired to
make the system perform. Changes from tuning
algorithms to changing entire software components
may be necessary. When complete, the engineering
cycle restarts at the “Build/Update Model” stage.

14) DONE — The engine has been measured to perform
as desired within the expected resource constraints.
Simplify the instrumentation to reduce overhead,
but leave enough to allow observation of the system
in production.

The phrase “Build/Update” denotes that the first time
through that part of the cycle, something must be built,
while the second and onward times, the built thing must
be updated somehow. We presume that an initial design is
available at the outset; it should, at a minimum, be a list of
software components to be used to fill the requirements.

There may be an initial “preflight” phase that is ex-
ecuted once for the project. There may be cases when
preflight instructions need re-execution, but we’ll consider
them a restart of the entire process. Next, we have three
cycles: analysis, engineering, and modeling. The analysis
and engineering cycles contain the modeling cycle.

The resulting process is shown in Figure 1.

Figure 1. Analysis and modeling procedure.

Our incremental method starts with an analysis of
the system. We map the critical behaviors to specific
paths through the code of specific software components.
We denote these paths as critical paths. We break the
code down into blocks, put together a rough O(f(N))

model for it — for some function f(N) on the number
of logged-in users N — and add instrumentation to
confirm or refute that model. In the confirmation case,
the instrumentation should serve as a basis for calibrating
the model. Simulation will fill the model in with data
from the instrumentation.

For DVEs, we start with the bulk-sum resource usage:
the total per-top-loop time for the engine, the total mem-
ory usage, and the total bandwidth used by the process.
Iterations through the modeling cycle will indicate which
model components need finer accuracy to determine
whether a constraint or requirement is met. Some parts of
the system may fit within the constraints with sufficient
margin that only the crudest model is needed.

Confidence interval analysis should indicate which
components of the model are acceptable and which ones
need additional modeling work. Additionally, simulating
at high levels can identify software components that will
need additional work — be it modeling, re-engineering,
or DVE concept alteration — to become acceptable. For
additional details [17] is recommended.

A. Preflight: Risk Exposure, Objectives, Paths and State

When beginning the scalability engineering process, or
the engineering project as a whole, some initial work up-
front is needed.

First, the value of the system’s ability to handle load
must be determined in terms of its balance with available
engineering time. During the process, the return on the
investment of effort — in terms of performance enhance-
ments — must be understood such that realistic goals
may be kept, and to provide guidance in terms of major
re-work versus less major tuning of the system as-is.

If a system is intended to be primarily used with a
small number of simultaneous users for some time, with
intentions of scaling higher later, it may be worthwhile to
only work for a smaller load-case now, and expend the
additional engineering effort later in the system’s lifetime.

An initial, minimal run through the modeling and
simulation stage may be useful to determine the current
state of affairs. The overall process is intended to be
incremental, with initial phases using very coarse models,
instrumentation, and simulators at the start. A single
engineer could put together a minimal load simulator
involving recordings of themselves only, repeated up for
a given number of players.

Once the effort is properly scoped, the desired per-
formance objectives are stated. Specific quantitative per-
formance values are best, when tempered with a good
understanding of the cost-benefit tradeoffs for them. The
specific values can be used to structure the model, as
discussed later.

Finally, the software system can be analyzed. Even if
the software is not complete, the system must at least have
the overall design — the set of software components and
their interconnections — specified. Using that, the system
state and the paths through the code can be elicited. The
critical system state will include items such as the scene
graph and per-client data structures such as any retransmit

data, sliding window buffers, etc. The critical paths are
traces through the code, across component boundaries,
that act as primary drivers for the performance and scale
characteristics of the system. Key candidates include the
simulation engine and the networking system.

B. Analysis: Data Gathering and Simulation

Before diving into the systems analysis, data must be
gathered on how people will use the virtual world. Human
behavior can be complex, and is easier to observe and
record than to predict. To that end, a user behavior study
is the first part of the analysis cycle.

The system is set up in a lab environment, with par-
ticipants on individual machines. The machines are set to
record their screens during the users’ use of the DVE. The
server is set to record basic instrumentation — at the most
basic level, this may be the output of top, but preferably
includes some basic “white-box” instrumentation as will
be used later in the modeling cycle.

User behavior is recorded for different counts: a single
user, a pair, three at a time, and upwards until the maxi-
mum number of feasible users (determined by lab space,
ability to recruit, post-activity data analysis capacity, etc)
is met. Each user count level should be run until a
stable state is reached. In the case that the users have to
participate in some linear activity, such as a collaborative
task or fantasy quest, then they should repeat it a few
times to get stable behavior. If substantial learning occurs
between iterations, new groups of participants may be
needed for each cycle.

A two-phase analysis is done to analyze the gathered
data. First, each recording is played back individually. At
a sample interval relevant for the DVE, categorize the user
behavior. Each category is a distinct behavior that could
load the DVE system differently. Each interval should be
fast enough to catch any short behaviors representatively
within the duration of the study.

Next, combine all the frequencies of all the categories.
If two categories end up overlapping, the recordings may
need re-analysis for a new categorization scheme. Again,
the criterion for this is the performance requirements to
support the behavior acceptably and the sorts of load
applied upon the DVE system as a result.

C. The Inner Cycle: Modeling

One part of the preflight process is determining how
much effort to put into the analytical process. We use an
incremental analyze-and-simulate method to both let us
scale the effort, and focus it on the most quantitatively
significant parts of the system.

When we find unacceptable resource usage, we con-
struct a more detailed model. The model illustrates the
RR-envelope ramifications for the software components
chosen to build the system. DVE software engineers can
then reexamine their design decisions to squeeze out
better performance.

1) Code Analysis: Our term Code Analysis is a cal-
ibrated algorithm analysis technique, applied across the
critical code paths.

Load Reification: First, the we convert the load values
from our load-performance envelope to real expected
event values and rates within the source code. For our
load parameter N , we expect that each client will transmit
updates to us at 10 Hz. That is 10N input packets per
second, and roughly 10N state changes.

Additionally, that means that our scene graph has N
avatars, plus a number proj(N) of projectiles in-flight.
We will propagate the input values into values of key
variables of the software component that handles input
and the scene graph. We can start with estimating the
values of only a few variables, and go further in-depth
as we find is needed. Most importantly, we instrument
the values we put in our load model. Instrumentation
techniques are covered in Section IV. This way, we can
verify our load model.

Value Propagation: The reified load values are applied
to the code within a software component. When that com-
ponent uses another, we use the relationships between the
load values and the parameters of the invoked component
to build a load model of the called component. Again,
instrumentation is added as desired to verify this load
model. Through this mechanism, we propagate the reified
load values into a full load model for the the transitive
closure of the call graph of the critical paths of the system.

Resource Model Derivation: With the component
load model complete, we convert the load into resource
requirements. Normal algorithm analytic techniques can
derive a basic resource model for the CPU: we simply add
instrumentation to calibrate the constants. Network I/O is
a transmitted rate expectation, multiplied by a transmitted
size expectation. Additional fixed overhead can be added
as a last constant on the expectation. Memory size is
more complex. We have to build an expected state of data
structures within the system under load. This includes
the scene graph and any network protocol data. In the
latter category we have any data needed for reliable
transmission of events, protocol data, and network socket
information.

D. Back-Arcs: Analysis, Engineering

Had some of our performance elements not been suf-
ficient, several options are available. In the most serious
case, the model may show that the desired performance
isn’t feasible within the constraints and the virtual en-
vironment. In other case, the engine may need a soft-
ware component change, or some tuning. Alternatively,
the model may simply have too-large error bounds for
sufficient confidence.

In the worst case, we may have had to modify the
virtual environment. For example, some large areas in
the DVE may simply have too many users interacting,
requiring that their respective updates include each other,
or their respective simulation work to involve too many
other objects or avatars. The experience may have to
be rethought fit within the resource and performance
constraints. Alternatively, some specific tasks within the
DVE may simply be too straining. For example, a user
interface for remote teleportation that gives live previews

of possible landing sites may simply require too many
updates from too many parts of the DVE. Or, a user with
binoculars may require too many changes to their area
of interest anytime that they move. Such concepts would
need adjustment to make the DVE feasible.

If the DVE does need conceptual changes involving
the ways that users may interact with the system, then
additional user-behavioral data must be collected after the
changes. The simulator needs to then be updated for the
new observed behavior. After that, the engineering cycle
can begin to validate the new DVE concepts.

In other cases, some component of the DVE engine,
such as the the simulation algorithm — or more likely
the scene graph data structure — may need to change
to maintain performance in the most common states of
the system. Or, some code or parametric tuning may
simply be necessary to drive down come constants in
the model. Whatever engine changes are needed, the
changes will not change the ways the user interacts with
the system. Thusly, the gathered user behavioral data
and consequential load simulator are usable for the next
iteration. An updated model and instrumentation for the
changes to the engine are all that are needed. If some of
the changes affect the system’s sensitivity to properties of
the assets, they may need re-evaluation.

Finally, the models may simply be insufficiently accu-
rate. The distribution of the object simulation times may
be modeled with a simple Gaussian distribution with high
variance, when the reality is bimodal. The model simply
needs an update for the higher-resolution component
model. Asset analysis may be necessary for the updated
model components, as well as engine instrumentation.

IV. INSTRUMENTATION TECHNIQUES

Collecting time-sensitive measurements from running
applications can be difficult. The collection process may
take enough time away from the observed application that
it alters the results. For applications running in production
environments, the collection process may occur occasion-
ally, causing the process of enabling and disabling the col-
lection to potentially interfere with system performance.

The ppt tool was created to specifically service these
constraints. Unlike more general solutions [18], within
the observed application, it only requires one system call
each for startup and shutdown, and only a small structure
fill and copy during observation. No specialized in-kernel
work is needed. In high-load situations, where the ob-
servations are less important than the timely execution
of the primary work, ppt treats observer-CPU starvation
as null values, resuming normal observations when the
scheduler allows. The observation and storage of data is
a separate process, which can be prioritized much lower
on the system scheduler than the production programs.

Users describe frames of individual data to ppt —
traces, or fragments thereof — and ppt generates code to
link into the executable to be measured, as well as a reader
program. Will will first discuss the frame description, then
embedding the generated code, the transfer mechanism,

/* Options section */
emit C
/* required, and the only current value */

/* Frame declaration */
frame example {

int kind, who;
time sleep, start, end;

} // no semicolon needed.

Figure 2. A frame description format example (comments are as in
C99).

the capture process, and finish up with a discussion on
caveats.

A. Describing Frames

The goal is to organize the measurements into frames,
roughly corresponding to a subset of C structs. ppt
generates code to save the current value of each member
in a frame, and to emit the frame out to shared memory.
The user will be responsible for invoking the code save
values for each member, and for emitting the frame.

The frame description format is best explained by an
example (Figure 2):

An initial emit statement indicates the language of
the observed program. Only “C” is currently supported,
but the generated code will compile and link with “C++”
programs.

This example declares a frame called example that con-
tains two integers kind and who and three timestamps:
sleep, start, and end.

Each frame is automatically reordered to minimize
padding overhead, and a definition for C is generated.
The only types allowed are int, float, double, and
time. The first three are their native equivalents on the
platform, and the last is a single timestamp — currently
a struct timeval, with microsecond precision.

If a member is not filled in before being emitted to
shared memory, it will retain its previously-set value. The
initial value of each member is 0.

B. Embedding Generated Code

For C, each frame will a header and source file gen-
erated (Figure 3). The header declares a C version of
the frame type, prefixed with pptframe and suffixed
with t. Additionally, it will define C macros for each
member, one each for int, float, and double, and
two for time.

In the example code, we have a simplified DVE core
loop that waits up to 32 milliseconds (sim interval)
for an event. At the minimum: it won’t catch up if more
than one simulation step is required to meet real-time
and doesn’t consider the event processing or simulation
delays in recalculating the timeout. The event can be a
transmitted user update (the most frequent case that we
expect), a user login, or user logout. When an event is
received, the remaining part of that 32 milliseconds is
returned (Event’s remaining time). That remainder
is the time we wait the next time through the loop.
Eventually we time out, either due to a period of time with
no events, or a zero remainder from the prior event wait.

#include "example.h" // the generated header

struct Event {
enum { .. } kind;
int remaining_time, user;
... // the event data.

};

// Wait up to ’timeout’ for a new packet,
// returning it or NULL if timed out.
extern Event *next_event(int timeout);

void primary_loop() {
int remaining_time = 32;
while (1) {

struct timeval my_sleep;
gettimeofday(&my_sleep);

// manually save the time
WRITE_EXAMPLE_SLEEP(my_sleep);
Event * ev = next_event(remaining_time);

// or use the provided macro
WRITE_EXAMPLE_START_TIMESTAMP();
// handle the event
if (ev) {
handle_event(ev);
remaining_time = ev->remaining_time;
WRITE_EXAMPLE_WHO(ev->user);
WRITE_EXAMPLE_KIND(ev->kind);

} else {
// it was a timeout. Run the simulation
WRITE_EXAMPLE_KIND(-1); // -1=timeout
WRITE_EXAMPLE_WHO(-1); // no user.
simulate_upto(1);
remaining_time = 32;
send_new_states();

}
WRITE_EXAMPLE_END_TIMESTAMP();
ppt_write_example_frame();

}
}

Figure 3. Instrumented Code

At this timeout, we simulate the virtual world forward
a single time step (of 32ms). Using ppt’s generated
macros, we store the kind of event (update, login, logout,
timeout), the amount of time slept for the event, and
the time taken for processing the event. Note that in
this example, if more than one Event is available,
remaining time will be the same as timeout.

In this example, clients will transmit a LOGIN event
(with an undisclosed server response), followed by 10 Hz
UPDATE events, followed by a LOGOUT event.

When building our example DVE, we simply need to
link the generated example.c file with the program
executable.

The data collected per event is relatively small, but the
information inferable from it is substantial:

1) Core Loop — The durations of end–start times-
tamps indicate how much processing time is spent
in the engine per event. Summing the ranges into
per-second groups, and dividing by one second
indicates the proportion of the processor the system
is using at the measured load level.

2) Event Frequency — The tuples of (kind, start)
indicate how often events are received at a given
load configuration. Note that this is at maximal
observation rate allowed by the core loop — if the
core loop was using less of the processor, it may
have been ready to receive them earlier.

3) Event Distribution — The tuples of (who, kind,
start) provide data for several analyses. During
periods of bursty logins or logouts, we’d be able to
observe their packet-receive distributions in relation
to the actual events; we use real timestamps, so we
can correlate these event times to the login/logout
times of the load simulator. Additionally, the jitter
of user update times can be observed for possible
client-side effects (e.g. uneven client CPU utiliza-
tion may result in high transmit jitter) or network
link effects. Finally, we can look for “phase” effects.
If users logged in at uniformly-distributed times,
we’d expect (and observe through LOGIN) that their
update times stay uniformly distributed. A uniform
event distribution keeps the CPU load even and
predictable. If the events start forming clusters, the
responding CPU work can result in bursty CPU
utilization.

4) Data Loss — With the same tuple of (who, kind,
start), we can detect missing events. A client
should be transmitting its state at a constant rate
of 10 Hz. If some clients transmit slower, we can
further analyze them for the root cause. Note that
to verify the lack of an event, we have to make
sure there were no gaps in the sequence number,
discussed in the next section.

C. ppt’s Transfer Method

The transfer mechanism involves three programs.
First, the program being observed has its generated
ppt write * frame() function, with the associated
macro calls to fill in the frame. Second, an agent program
creates shared memory and notifies the program being
observed of it. Finally, a listener attaches to the shared
memory and saves everything observed, in order. A fourth
generated program converts the saved binary observations
into a text table, and is runnable when the observations
are complete.

The frame is converted to an in-memory layout, and the
members are reordered to minimize space while keeping
them on their respective alignments. A sequence number
is prepended to the frame definition. The number is
incremented at each frame.
ppt declares a C struct to represent it, a global

instance of it, an integer for the shared memory handle,
and a pointer to the mapped shared memory instance. By
default, the handle is zero, and the pointer isNULL.

The ppt write * frame() routine will check the
buffer pointer — to determine if observation is enabled
— and copy the structure’s values to the buffer. Upon
hitting the end of the buffer, it will start writing at the
beginning again.

The listener reads as many frames it can with increasing
sequence numbers — minus on exception for sequence
number roll-over — and writes them to disk with no
translation, then it sleeps. The sequence number constraint
prevents reading an old value again.

1) Overhead: The overhead on the listener can be
counted directly. Each call to a member-writing macro is

a single variable assignment of that variable’s type. Each
frame write includes two comparisons, one structure copy,
two writes to the sequence number, and an increment,
comparison, and reset of a pointer. The sequence number
also acts as a temporary lock.

When the agent first attaches on, the observed process
will invoke shmat(2) to attach the shared memory.
Similarly it will invoke shmdt(2) when the observation
has ended.

2) Rate Adaptation: If the observed process writes
faster than the listener can read, some values will be lost
— but their loss will be detected in a gap in sequence
numbers, the listener will continue to read data and adapt
to the new rate. The rate adaptation occurs by modulating
the sleep time. Similarly, an event slowdown will result
in the delay increasing, up to a hard-coded maximum of
2 seconds.

The initial sleep delay is currently hard-coded to
100ms. The delay is adjusted if less than 1/8th, or more
than 7/8ths of the buffer was read. The sleep delay and
read-frame count are used to estimate the current write
rate, and the delay is then adjusted to match 1/2 of the
buffer size. A hard-coded minimum of 10ms throttles the
maximum CPU time the listener can take.

The read-write process continues until the agent notifies
the program being observed to detach the shared mem-
ory. The listener is terminated, and the shared memory
removed.

3) Notification Mechanism: The term “notification”
is a simplification; through the /proc filesystem,
ptrace(2), and analysis of the program’s ELF tables,
the variable for the shared memory handle in the program
being observed is directly modified. When the observation
begins, the ppt write * frame() routine detects the
new value and attaches the segment, making it ready
to write to. Similarly, when the handle variable is set
back to zero, the routine will detach the memory and
ignore requests to write the frame out. This mechanism
further minimizes the intrusion upon the operation of the
observed program.

D. Capturing Data

The listener is a custom-generated program, emitted
as LLVM bitcode [19]. The bitcode format enables JIT
interpretation for quick turnaround during prototyping,
and full-on optimized compilation when the format is
stable. It attempts to minimize the amount of work per
scan through the shared memory, by re-tuning its delays
and buffered I/O, it stays off the processor as much as
possible. For situations where ppt can be run on a system
with LLVM, but the system running the generated code
doesn’t have LLM, a slower C equivalent listener is also
generated. When the data capture process is complete.
Another ppt-generated program reads the binary frames
and outputs a text file separating each field by a tab
character, and every frame by a new line.

seqno kind who sleep.tv_sec sleep.tv_usec ...
501 1 1 1294621640 50116 1294621640 35661...
...

V. RESULTS

Analyzing the Torque [20] engine, we first determined
that the protocol only allowed a maximum of two packets’
worth of data to transmit to each client at a time. This
substantially limited the number of clients that a Torque-
based system could handle at one time. In our user studies,
the limits were hit in the mid 20s. Our performance risk
for system quality is that we have too many updates to
send one or more clients at a time, which would go well-
beyond the two packets limit.

The critical path for Torque was a simple (1) process
inputs, (2) simulate, and (3) process outputs cycle. Our
model followed it closely. The cycle itself was dominated
by simulation time. The I/O processing was essentially
linear — there was a sort, but its time-coefficient was
so small that it was lost in the measurement noise. The
critical state of the engine is the scene graph. The per-
client connection state would become more important in
higher-precision models.

Using a load simulator built from observed user be-
havior, we were able to simulate 70 simultaneous users
(each receiving a poor update rate, but still logged–in
and able to provide load to the server). ppt allowed us
very fine-grained control with little overhead. On a 1 GHz
equivalent virtual CPU share, the result was a ≈ 2, 500
event/sec data feed that stayed between (CPU) 0.00% and
0.01% in top.

Our resulting model showed, the mean time for a single
simulation step for a player was 0.2978 milliseconds,
but the variance was 4.6303 (ms2) — a multimodal
distribution of times, corresponding to the hot spots within
the virtual environment. Updates on the environment
should work to reduce the peak simulation times, probably
through reducing the exposure to those dense “hot spots”
in the virtual environment.

VI. CONCLUSION

Through its use in the analysis of game engines
in our research, the process described here provides a
straightforward way to determine the scalability of a DVE
by determining the relationships between load, resource
requirements, and performance.

Future work on ppt will center on finding reliable
methods to collect timestamps without invoking a system
call and enable multithreaded writing to the buffer. A
discriminated union type for the frame would be useful.
The frame could support detailed data for multiple event
types simultaneously, with the caveat that all frames
would take as much buffer space as the largest variant.

ACKNOWLEDGMENT

This work was supported in part by Science Foundation
Ireland grant 03/CE2/I303 1 to Lero-The Irish Software
Engineering Research Centre. This research was also par-
tially supported by the Ministry of science education and
sports of the Republic of Croatia, grant no. 036-0362027-
2028 “Embodied Conversational Agents for Services in
Networked and Mobile Environment”.

REFERENCES

[1] H. L. Singh, D. Gračanin, and K. Matković, “A load simulation and
metrics framework for distributed virtual reality,” in Proceedings
of the 2008 IEEE Virtual Reality Conference (VR ’08), 8–12 Mar.
2008, pp. 287–288.

[2] H. L. Singh and D. Gračanin, “Load characterization for dis-
tributed virtual environments,” in Proceedings of the 1st Inter-
national Workshop on Concepts of Massive Multi-user Virtual
Environments (CoMMVE’09), Kasel, Germany, 5 Mar. 2009.

[3] D. H. Eberly, 3D Game Engine Architecture. Morgan Kaufmann,
2005.

[4] G. J. Kim, K. C. Kang, H. Kim, and J. Lee, “Software engineering
of virtual worlds,” in Proceedings of the ACM symposium on
Virtual reality software and technology, ser. VRST ’98. New
York, NY, USA: ACM, 1998, pp. 131–138. [Online]. Available:
http://doi.acm.org/10.1145/293701.293718

[5] J. Seo, G. J. Kim, and K. C. Kang, “Levels of detail (lod)
engineering of vr objects,” in Proceedings of the ACM symposium
on Virtual reality software and technology, ser. VRST ’99. New
York, NY, USA: ACM, 1999, pp. 104–110. [Online]. Available:
http://doi.acm.org/10.1145/323663.323680

[6] S. Robinson, “General concepts of quality for discrete-event simu-
lation,” European Journal of Operational Research, vol. 138, no. 1,
pp. 103–117, Apr 2002.

[7] B. Watson, V. Spaulding, N. Walker, and W. Ribarsky, “Evaluation
of the effects of frame time variation on VR task performance,”
Virtual Reality Annual International Symposium, 1997., IEEE
1997, pp. 38–44, Mar 1997.

[8] P. Quax, P. Monsieurs, W. Lamotte, D. D. Vleeschauwer, and
N. Degrande, “Objective and subjective evaluation of the influence
of small amounts of delay and jitter on a recent first person
shooter game,” in SIGCOMM 2004 Workshops: Proceedings of
ACM SIGCOMM 2004 workshops on NetGames ’04. New York:
ACM Press, 2004, pp. 152–156.

[9] T. Henderson and S. Bhatti, “Networked games: a QoS-sensitive
application for QoS-insensitive users?” in RIPQoS ’03: Proceed-
ings of the ACM SIGCOMM workshop on Revisiting IP QoS. New
York: ACM Press, 2003, pp. 141–147.

[10] J. Rolia and V. Vetland, “Parameter estimation for performance
models of distributed application systems,” in CASCON ’95:
Proceedings of the 1995 conference of the Centre for Advanced
Studies on Collaborative research. IBM Press, 1995, p. 54.

[11] M. Qin, R. Lee, A. E. Rayess, V. Vetland, and J. Rolia, “Automatic
generation of performance models for distributed application sys-
tems,” in CASCON ’96: Proceedings of the 1996 conference of
the Centre for Advanced Studies on Collaborative research. IBM
Press, 1996, p. 33.

[12] B. N. Corwin and R. L. Braddock, “Operational performance
metrics in a distributed system. part i.: Strategy,” in SAC ’92:
Proceedings of the 1992 ACM/SIGAPP symposium on Applied
computing. New York: ACM Press, 1992, pp. 867–872.

[13] C. Greenhalgh, S. Benford, and G. Reynard, “A QoS architecture
for collaborative virtual environments,” in Proceedings of the
seventh ACM international conference on Multimedia (Part 1).
New York: ACM Press, 1999, pp. 121–130.

[14] H.-K. Wu and P.-H. Chuang, “Dynamic QoS allocation for multi-
media ad hoc wireless networks,” Mob. Netw. Appl., vol. 6, no. 4,
pp. 377–384, 2001.

[15] J. Wroclawski, “Specification of the Controlled-Load Network
Element Service,” RFC 2211 (Proposed Standard), Sept. 1997.
[Online]. Available: http://www.ietf.org/rfc/rfc2211.txt

[16] D. W. Smith, Brute Force: Betrayals. New York: Balantine Books,
2002.

[17] R. K. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. Wiley, 1991.

[18] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
instrumentation of production systems,” in Proceedings of the
annual conference on USENIX Annual Technical Conference, ser.
ATEC ’04. Berkeley: USENIX Association, 2004, pp. 2–2.

[19] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of
the international symposium on Code generation and optimiza-
tion: feedback-directed and runtime optimization, ser. CGO ’04.
Washington, DC: IEEE Computer Society, 2004, pp. 75–.

[20] GarageGames, “Torque game engine,”
http://www.garagegames.com/ [Last accessed 28 Apr. 2011].

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

