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Abstract—This paper presents the first method for isosurface
extraction from smoothed particle hydrodynamics (SPH) data
that is exact with respect to the functional representation
provided by SPH. The Marching Correctors algorithm is an
extension of the Marching Cubes algorithm which is adapted to
the SPH representation and avoids resampling to a full grid. The
algorithm operates on a virtual grid of sufficiently high resolution
to faithfully reconstruct the fields represented by the SPH data.
The virtual grid is efficient in terms of both memory usage and
computing time, because cells are only materialized and processed
if they are either seed cells or intersected by the isosurface.
Besides the virtual grid, a key idea of our algorithm is to add
a correction step to the isosurface vertices. An evaluation of the
algorithm in terms of accuracy and performance is given based
on three SPH datasets. By comparing with [1] on similarly sized
data a performance gain of almost two orders of magnitude was
achieved. Moreover, it is demonstrated how the correction step
effectively reduces the typical artifacts produced by the Marching
Cubes method.

I. INTRODUCTION

The extraction and rendering of isosurfaces is one of the
basic visualization methods for scalar fields. There exists a
huge body of literature on isosurface extraction with special-
izations for the different types of data discretization. Most
of the existing methods deal with data organized in either
hexahedral or tetrahedral cells, and only a small fraction
addresses meshless data, that is data given on a set of points. In
contrast to this, point-based representation on the output side
has been treated more extensively, because many isosurface
extraction methods generate points more immediately or more
naturally than their connectivity. But even for meshless data,
polygonal isosurfaces have a number of advantages, since
for visualization purposes it is often required to compute
additional properties such as volume, curvature or surface area
of the extracted surfaces [2]. An example of four isosurfaces
from SPH data can bee seen in Fig. 1.

SPH data sets are functionally represented scalar and vector
fields which are given on a set of particles. Each particle
is represented by the field values and a radially symmetric
kernel. As opposed to other functional representations, SPH
has kernels with relatively large support radii which means
that in order to reconstruct the field at a given location, in the
order of a hundred neighbors have to be evaluated.
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While reconstruction of the field is comparably expensive,
the SPH representation offers the advantage of high-quality
gradients which can be computed at relatively little extra cost.
We make use of these gradients for optimizing the intersection
points generated by the standard Marching Cubes algorithm.

Our contributions are as follows:

o We present the first method for isosurface extraction from
SPH datasets where all extracted vertices are guaranteed
to be placed at positions where the field assumes the
selected iso-value.

o We suggest a virtual grid to structure the processing and
guarantee that the resulting mesh is water-tight without
requiring resampling on all positions of a full grid. The
virtual grid is never stored in memory in its entirety.

o We describe a trimming method at the free surface to get
a consistent isosurface boundary.

« The selection of seed cells is the most expensive part of
the Marching Correctors algorithm and it is computed on
the GPU.

o Vertex normals are computed directly from the SPH rep-
resentation instead of using a gradient estimation scheme.

In the next section we give some background on isosurface
extraction with a focus on SPH data and point-sampled data.
In Section III we give an overview of the Marching Correctors
algorithm. An evaluation of performance and accuracy is given
in Section IV followed by conclusion and future directions in
Section V.

II. RELATED WORK

a) Visualization of SPH data: There exist a few visual-
ization packages for SPH data. SPLASH [3] is capable of
producing 2D plots of data by projecting particles onto a
plane, and 3D plots by integrating the kernel contributions
of all particles intersecting a ray through the view pixel. In
addition to these image-space methods, there are a few object-
space methods available such as streamline plots. ParaView [4]
supports SPH data through its meshless extension described in
[5]. It has functionality for resampling SPH data onto planes,
grids and arbitrary geometric meshes. This resampled data
can then be used with grid-based visualization algorithms to
generate isosurfaces, integral lines and surfaces, etc. However,
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Fig. 1: Three pressure isosurfaces and the free surface of the
tsunami data at time step 194, p = 1000 (red), 4000 (yellow),
10000 (green).

resampling is expensive, and it does not provide exact gradi-
ents.

b) Isosurface Extraction: Together with direct volume
rendering [6], isosurfaces are still one of the methods of choice
for visualizing scalar fields. Historically, isosurfaces were
obtained by generating contours on a set of planar sections
and stitching them together [7]. Direct isosurface extraction
from volumetric data started with Lorensen and Cline’s sem-
inal paper [8] and subsequent modifications for topologically
consistent isosurfaces [9], [10]. Optimized methods based on
octrees [11], interval trees [12], [13] or extrema graphs [14]
avoid the processing of cells not intersected by the isosurface.
Several efficient methods use the span-space [15]-[17] for
fast and space-efficient retrieval of the set of all intersected
cells. Isosurface extraction from time-dependent data requires
temporal extensions of the acceleration data structures. Recent
methods are based on persistent octrees [18], [19] or on
a temporally extended span-space [20]. A 2006 survey of
Marching-Cubes methods was given by Newman and Yi [21].

While the problem of point-based isosurface extraction from
gridded data has been studied extensively [22]-[24], there
is relatively little work on point-based isosurface extraction
from point-sampled data. Co and Joy presented an isosurface
algorithm for point-sampled data [25] where a set of point
splats is generated and rendered by a splatting technique [26].
Rosenberg and Birdwell [27] presented an isosurface method
for SPH data. It is restricted to the special case of extract-
ing the free surface. An accurate method for reconstructing
free surfaces from SPH data has recently been proposed by
Marrone et al. [28]. Rosenthal and Linsen [29] used a similar
approach, where the field is reconstructed only on a set of
edges between neighbor samples. In two later papers, a level
set technique is used for smoothing the isosurface [1] and the
smoothing process is combined with the isosurface extraction
into a PDE [30]. A follow up [31] improves the performance
of their approach by evaluating the level-set function only in
a narrow band around the zero-level set.

A main difference between our work and the work of
Rosenthal and Linsen is that they deal with point-sampled

data, not with functionally represented (kernel-based) data.
Also, their level-set approach has the goal of optimizing the
smoothness of the isosurface. In contrast, for SPH data the
field values can be reconstructed by evaluating all kernels that
overlap the query location. It makes no difference whether
the query location is a particle position or not, therefore
SPH data are not point-sampled data. Since the reconstruction
can be done anywhere within the fluid, SPH is an implicit
representation of the exact isosurface. The goal of an SPH
isosurface algorithm must therefore be to generate samples of
the exact isosurface and without an extra smoothing step.

III. THE MARCHING CORRECTORS ALGORITHM

The extraction of the isosurface is performed by processing
cells of the virtual grid. The grid exists only virtually and
is never stored in its entirety. The algorithm consists of an
initialization phase and two main parts as can be seen in Fig. 2.
During initialization, an acceleration structure is created for
efficient SPH interpolation (see Section III-A). In the first step
(see Section III-C), seed cells in the virtual grid are selected.
In the second step (see Section III-D), the processing starts at
the seed cells and creates the surface geometry.

Acceleration Structure
Construction (0)
N

Seed Cell Selection "

Surface Extraction

| Cube Triangulation I(z)

| Vertex Correction I(3)

| Boundary Trimming I(4)

| seed Cell Update  [(5)

Fig. 2: Algorithm overview. (0) An acceleration structure is
computed in a preprocessing step. (1) The scan for seed cell
selection is performed on the GPU. (2) The first seed cube in
the list is picked and triangulated. (3) The triangle vertices are
corrected along the cube edges. (4) Resulting triangles at the
boundary are trimmed. (5) The seed cell list is updated.

A. Spatial Data Structure

For efficient SPH evaluation a spatial data structure is
needed because of the required neighborhood lookup. In our
implementation, we chose to use a regular grid where every
particle is only stored in the cell where its center lies. The
spacing is chosen to be 2 -max {h; |i = 1..N }. As a result, a
neighborhood lookup has to consider 27 regular grid cells.
The factor 2 results from the SPH kernels which usually
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have an extent of 2h. A regular grid performs well, since
in current engineering applications, particle size is nearly
constant. For other types of SPH simulation, a kd-tree can
be more performant, although much more expensive to build.
This step can be seen as a form of preprocessing and does not
have to be repeated when other isosurface levels are requested.

B. Virtual Grid

The presented algorithm is based on a virtual grid consisting
of uniform cubic cells. This grid, which is not to be confused
with the regular grid used for particle search (as explained
in III-A), is never stored in memory entirely but only rep-
resented by means of extent, dimension and cube size. The
size of a cube is set to ¢- min{h; |i = 1..N } where ¢ = 0.5
per default. The spatial sampling rate given by the particles in
our two example datasets was about 0.55h, 0.65h (dam and
tsunami) and h (vortex rings). Reasonable values for c are
therefore between 0.5 and 1.0. With values higher than 1.0
the topology of the isosurface can start to become simplified.
By choosing c, a trade-off is made between level-of-detail and
computation time.

A major issue when dealing with SPH is that it is very
expensive to interpolate a value. When using Marching Cubes
it is normal that a value at a given position is requested
multiple times — up to eight times per grid vertex. A lot of
performance can therefore be gained by caching values for
later reuse. One benefit of the virtual grid is that there is no
direct cost associated with it in terms of memory consumption
as the grid is only implicitly available. It is therefore not an
option to use a full grid for the cache. Instead we resort to a
slice based approach, similar to the one used in [27]. As we
will see, it is sufficient to keep three slices at once in memory
as the cubes are calculated more or less in order (see also
Section III-D). Since the set of seed cells is not the complete
set of intersected cells, it can happen that a grid point which
is in a slice already deleted needs to be evaluated. Such cache
misses of course affect performance of the method. At the
cost of increased memory consumption, one can increase the
number of slices which are kept in memory at once. However,
in the three examples, and for all time steps used to create
the videos, a cache of three slices was sufficient to get a near-
optimal cache hit ratio.

C. Seed Cell Selection

The purpose of this step is to find cells of the virtual grid
that are effectively intersected by the isosurface. Selecting seed
cells that are not intersected by the isosurface is not a problem,
but their number should be small in order to avoid unnecessary
computation. False negatives, or missed cells that do intersect
the isosurface, are also not a problem as long as there is at
least one seed cell selected per connected component of the
isosurface. For performance reasons it is desirable to have as
many (positive) seed cells as possible to improve the cache-hit
ratio. This is in contrast to other work [32] where the objective
is a minimal set of seed cells.

The basic idea of the seed cell selection is to find pairs of
neighboring particles which have data values below and above
the isosurface level. For this we compare each particle with
all particles within a radius of h. Once such a particle pair
is found, we have to make sure that a cell of the virtual grid
which contains the isovalue is selected. By the intermediate
value theorem this has happen at least once on the straight line
connecting the two points. Therefore, all cells intersected by
the straight line between the two particles are added the list
of seed cells. This is done using a Bresenham-style iteration.

A performance issue of the SPH representation is now that
the evaluation of smoothed data is quite expensive because it
requires finding a large set of neighbors, computing distances
to them, and evaluating kernel functions. To make seed cell se-
lection fast, we use the data specified at the particle positions.
This avoids evaluating kernel functions. SPH kernels have the
partition of unity property, which means that smoothed data
do not deviate much from the raw data specified at the particle
positions. More importantly, by using raw data we still do not
miss any small connected component: small components are
near local minima or maxima of the scalar field. In the case of
a maximum, the smoothed scalar field cannot assume values
larger than the largest raw data value that contributes to the
weighted sum This means that taking raw instead of smoothed
data expands the data range in the vicinity of a local minimum
or maximum, which can lead to unnecessary seed cells (false
positives), but not to missed isosurface components.

The process of selecting seed cells is very well suited for
parallelization, and has been implemented on the GPU using
CUDA [33]. The resulting seed cell indices are transferred
to the CPU and are stored in a set container (from the
C++ standard template library), which is internally a tree
structure. The set container by design cannot store the same
key multiple times, so all the duplicate cells are eliminated
automatically. The indices are sorted in the tree using a lexi-
cographic ordering of the cube index. This facilitates caching
(see III-B) where both lexicographic ordering of the virtual
grid indices and efficient insertion are required.

D. Surface Extraction

Given the set of seed cells, the actual extraction of the
surface is performed. From a broad view, this process is similar
to the Marching Cubes scheme with modifications described
in the following subsections.

1) Marching Cubes Table Lookup: For each seed cell,
a standard Marching Cubes step is done using a publicly
available lookup table by Bourke [34]. This produces a set of
consistently oriented triangles that correctly matches triangles
generated in adjacent cells. The Marching Cubes method
generates vertices by linearly interpolating data on the edges
of the cell. A lookup in a second table is made to retrieve the
subset of neighbor cells where the isosurface continues. All
these cells are added to a queue of cells provided that they have
not been visited before. This simple queue mechanism makes
sure that only those cells have to be processed which are either
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seed cells or which effectively contribute to the isosurface.
It was already used by Wyvill et al [35] in their isosurface
method predating Marching Cubes.

2) Correction Step: Since the SPH representation allows
for an accurate evaluation at arbitrary points in the domain, we
can apply correction steps to the vertices of the triangle mesh.
These vertices lie on edges of a cube within the virtual grid,
the two end points of which have a pair of values above and
below the isosurface level. According to the intermediate value
theorem, there must be a point on the edge where the field
exactly equals the level. The idea is now to correct the vertex
found by linear interpolation toward this point. This is done by
evaluating the directional derivative of the field with respect
to the coordinate that varies along the edge. The directional
derivative is one of the three components of the SPH gradient
and it can be computed efficiently together with the field value.
With this derivative, a number of Newton-Raphson steps are
done, making sure that corrected points stay within the extent
of the edge. A small number of iterations leads to points lying
on the actual SPH isosurface with high precision.

3) Boundary Trimming: In contrast to grid based data, SPH
data has no concise definition of the boundary. Also, even if
a concise definition was available, it would not be aligned
with the virtual grid used by the Marching Correctors. Solid
boundaries, or walls, are sometimes available as an extra set
of “solid particles”, or they are just geometrically specified.
Free boundaries have to be detected from the set of (fluid)
particles, e.g. by the algorithm of Marrone et al. [28]. For
an approximation of the free surface, the sum of weights
> w;W(x — xj,h;) can be used and checked against a
threshold [27]. In this work, we use this simple technique for
detection of all boundaries. However, our framework would
also allow for an implementation of Marrone’s method which
basically amounts to computing a derived field on grid nodes
near the boundary and taking its zero level set. The purpose
of boundary detection is that we have to trim the isosurface
mesh at the boundary. This is to make sure that all vertices of
the mesh not only satisfy the isosurface equation, but are also
lying within the fluid volume.

There are two thresholds used, the node threshold for the
virtual cube vertices and the vertex threshold for the isosurface
vertices. The node threshold is set to a very low value such
as 0.1. Cells of the virtual grid where the sum of weights
falls below this threshold at a single vertex are discarded.
The vertex threshold (we suggest 0.5) is used for trimming
triangles that have at one or two of its vertices a sum of
weights below this threshold. Trimming is done as is shown
in Fig. 3 and it can result in a quad which has to be split into
two triangles.

4) SPH Surface Normal Evaluation: Normal vectors are
required for the rendering of a surface with a local lighting
model. Accurate surface normals are therefore essential for a
correct perception of the isosurface. A standard method is to
estimate the normal at a surface vertex by a weighted average
of the normals of the adjacent triangles. However, due to
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Fig. 3: Different trimming cases. The relation symbols indicate
the sum of weights relative to the vertex threshold. If the sum
of weights is above or equal to the threshold at all vertices,
the triangle is kept (a). Otherwise, if the sum of weights is
below or equal at all vertices the triangle is discarded (b). It
is trimmed in the three remaining cases (c-e).
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Fig. 4: Comparison of original (top) and trimmed (bottom)
wireframe.

the irregularly shaped triangles in Marching Cubes meshes,
this simple approach produces poor normals which show as
artifacts in the rendered surface. Better isosurface normals are
obtained by using the underlying scalar field and estimating
its gradient at the vertices of the isosurface. In the special case
of SPH data, high-quality gradients can be obtained directly at
arbitrary points. Since the calculation of the SPH gradient is
more expensive than a simple interpolation, these high-quality
normals are not computed in the preview quality mode where
mesh vertices are not corrected.

IV. RESULTS

The algorithm has been tested on three datasets, the tsunami
dataset from [36], the dam breaking simulation [37], and the
vortex rings [38] dataset.

There are two parameters in the algorithm which have a
large impact on the performance. First, there is the ability
to adapt the virtual grid size. It can be increased from the
default 0.5k for preview purposes to get better performance.
Also, depending on the smoothness of the data, a low value
here leads to an unnecessary high triangle count. The second
parameter is a scaling factor for the smoothing length h of the
SPH data. It has been shown [39] that shrinking the kernel
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size can give a huge speedup with only a small loss of quality.
This will reduce the quality of the SPH interpolation but also
make it faster as the particle overlap is reduced. For preview
purposes this loss of quality is very often acceptable.

All timings were performed on a 2x Xeon E5430 with 64
gigabytes of RAM running Linux. The GPU used is a Nvidia
GTX 295. Even though the GTX 295 is equipped with two
GPUs, only one of them was used and the memory transfers
to and from the GPU are included in the timings. Also, the
CPU portion of the code only uses a single core.

A. Tsunami Data Set

The first test dataset is a SPH simulation of the creation of a
tsunami [36]. In the simulation, a wedge is sliding downward
which is idealizing a landslide. The simulation contains 249
time steps and 1.2 million particles and uses the quadratic
kernel [36] with a constant smoothing length of & = 0.056.

Fig. 6: Vorticity magnitude isosurface in the tsunami data (time
step=150, vorticity=5).

B. Dam Break Data Set

Our second test data set is an SPH simulation of the
SPHERIC dam breaking case [37]. It has 87 time steps, each
with roughly 670,000 fluid particles using the cubic spline
kernel [40]. Solid boundaries are modeled with solid particles,
while the air contains no particles. In contrast to the tsunami
data set where the smoothing length is fixed for every particle,
the dam break data has a variable smoothing length. When
varying the kernel size as described in Section IV-D, the
smoothing radius of every particle is multiplied by a constant
factor.

C. Vortex Rings Data Set

The third dataset is a simulation of the collision of two
vortex rings at circulation-based Reynolds number equal to
1600 using a vortex method [38]. The initial conditions are
set to reproduce the experimental results by [41]. It contains
about 10,000,000 particles and uses the M’4 kernel [42] with
a radius of h = 0.0005. There are no free surfaces in this data.

In the work of Rosenthal et al. [31] they write that it
takes about 6 minutes to extract a surface of 47k vertices
from a dataset of 8 million particles. Comparing this to our
performance in Table I, we find that our method is about 80
times faster, extracting about 150k vertices from a dataset of
10 million particles.

Fig. 7: A, isosurface in the dam break data (time step=30,
Ag = —150).

D. SPH Kernel Size

In SPH simulations the number of particles overlapping a
position within the data is usually very large — on average
about 70 for the dam break data and over 200 for the tsunami
data. This overlap can be reduced by shrinking the kernel
size by a constant factor. Doing so can result in an enormous
speedup without sacrificing too much accuracy, which for a
preview is certainly sufficient. Next to the original kernel size,
we selected the scaling factors 0.75 and 0.5 for testing.

In case of the tsunami dataset, setting the scaling factor to
0.75 reduces the extraction time by almost 40%, as shown in
Table II. At a scaling factor of 0.5 the performance is doubled,
and the visual quality did not suffer visibly as seen in Fig. 5.

With the dam break data the performance impact of kernel
size reduction is similar as seen in Table III. In case of a
noisy surface as its the case in the pressure isosurface of
the dam break data, a factor of 0.5 can introduce very small
isosurface components close to the boundary, where the SPH
interpolation quality suffers even more, see Fig. 9. Otherwise,
the surface was extracted with almost no visual errors.

Fig. 9: Effect of excessive kernel scaling in noisy datasets. In
the two close-ups the isosurface is replaced by one generated
with scaled (0.5) kernel, revealing artifacts.

E. Virtual Grid Size

Depending on the resolution of the simulation and the
smoothness of the data, a grid as fine as 0.5h is not needed.
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(2)

(b)

Fig. 5: Pressure isosurface (time step=194, p=3000) in the tsunami data with a virtual grid size of 0.5h = 0.028 without (a) or
with (b) the effect of scaling down the smoothing length by a factor of 0.5. The surface is colored by the sum of the kernels,
where green means a value of 1 and red a value of 0.5 or less. Even with the reduced kernel size, the algorithm manages to
reproduce the large surface without visible defects and to capture high-frequency details, such as the “splashes” in the front

part of the isosurface.

(b)

Fig. 8: Transparent rendering of the vorticity isosurface with w = 10 (a) and w = 0.1 (b).

In Table IV the grid statistics with two different grid sizes
for the tsunami dataset is shown. Even though the number of
grid cells is shrunk by a factor of eight, all other numbers
are more or less decreased by a factor of four which is to be
expected because of the 2D nature of the surface. The decrease
in the number of seed cells is not as dramatic since seed cell
selection works better with larger grid cells.

The effectiveness of the candidate selection can be observed
in Tables IV. The technique selected about 3% of all possible
virtual cells, approximately half of them were used for the
isosurface. The ratio could be improved a lot by using lin-
ear interpolation instead of the Bresenham algorithm in the
seed selection. This way however, we cannot guarantee the
evaluation of all positive seed cells.

In terms of runtime, the time needed for the surface ex-
traction process is also cut roughly by a factor of four. When
shrinking kernel size, the effect is less dramatic because the

percentage of time used for data structure management such
as candidate lists, cache handling etc. starts to increase.

FE. Effectiveness of the Correction Step

In Table V the distribution of the sizes of correction steps
is analyzed. It shows that correction steps are mostly in the
order of a few percent of the edge length, but can reach up
to a third of the edge length. Enabling the correction step
roughly doubles the total time for surface extraction as shown
in Tables II and III. However, if either a coarser grid is used or
the smoothing length is scaled down, this overhead diminishes
rapidly. The gain in visual quality by the correction step
outweighs the loss by any of these two simplifications (Fig. 5).

V. CONCLUSION AND FUTURE WORK

In this paper we presented a fast and precise method for
extracting the isosurface geometry in SPH data. We have
presented a mesh trimming technique to create the boundary
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TABLE I: Computing time (seconds) for a vorticity isosurface
(w = 20) in the vortex rings data, A~ = 0.0005.

h scaling factor 1 0.75 0.5
Grid size 0.5h h 0.5h h 0.5h h

1.131.13 14 14 215215

Seed cell selection 0.72 0.72 0.55 0.55 0.35 0.35
Surface extraction 3.48 0.73 2.90 0.59 1.94 0.39

420 1.45 345 1.14 2.29 0.74

Grid construction

Total w/o corr.

TABLE II: Computing time (seconds) for a pressure isosurface
(time step 149, p = 2000) in the tsunami data. The grid
construction times raise because of the finer-resolution of the
grid when the kernel size becomes smaller. Grid construction
time is omitted in the totals as its a preprocessing step.

h scaling factor 1 0.75 0.5

Grid size 0.028 0.056 0.028 0.056 0.028 0.0562
Grid construction 0.08 0.08 0.1 0.1 0.16 0.16
Seed cell selection 0.7 0.7 036 036 0.17 0.17
Surface extraction 265 05 1.72 034 094 0.19
S.e. with correction 3.45 0.7 3.02 0.65 1.84 043
Total w/o corr. 335 120 208 0.7 1.11 036
Total with corr. 415 140 338 1.01 2.11 0.60

of the isosurface at free surfaces. We have also demonstrated
that the kernel and the grid size can be reduced or enlarged
to get a preview of the surface in very little time. On the
other hand, we have shown how a correction step can enhance
the precision of the surface significantly. Our method can be
applied to any scalar attribute of the SPH particles including
derived data such as magnitudes of vectors or dot products of
vectors. It is not limited to SPH data, but can be used for other
functionally represented data, provided that the computation of
gradients based on kernel gradients yields sufficiently accurate
results. In comparison to other isosurface geometry extraction
methods, our method not only delivers precise results, but also
does so within a fraction of time. More specifically, compared
to the works of Rosenthal et al. our method runs more than
80 times faster than their method on similarly sized data.
Many extensions and improvements to the Marching Cubes
algorithm have been suggested which can be incorporated
into the presented approach. Especially notable is recent work
improving the topological correctness [43] and the extraction
of the surface completely on the GPU [44]. In Section III-B
we discuss the slice-based cache we employ to avoid duplicate
field evaluations. For very large virtual grids this can require
a lot of memory and a more elaborate caching scheme can be
beneficial. We plan to investigate this in future work.
Another idea would be an optimization method for speed-
ing up the seed cell selection when the isosurface level is
changed. However, unlike in gridded data, seed cell selection is
comparably inexpensive because the actual surface extraction
requires a lot of computation for evaluating the SPH represen-
tation of the field. Another promising approach to optimization

TABLE III: Computing time (seconds) for a Ay isosurface
(time step 30, Ao = —150) in the dam break data.

h scaling factor 1 0.75 0.5

Grid size 0.006 0.012 0.006 0.012 0.006 0.012
Grid construction 0.07 0.07 0.1 0.1 0.17 0.17
Seed cell selection  0.08 0.08 0.05 0.05 0.04 0.04
Surface extraction 0.73 0.17 0.54 0.13 0.38 0.09
S.e. with correction 2.13 048 1.63 0.37 0.98 0.23
Total w/o corr. 0.81 0.25 0.59 0.18 042 0.13
Total with corr. 221 056 1.68 042 1.02 0.27

TABLE IV: Statistics of virtual grid cells and cells actually
used for isosurfaces of the Tsunami data (Table II) and the
Dam Break data (Table III) when no particle shrinking is used.

Tsunami Dam Break
Grid size 0.028 0.056 0.006 0.012
Virtual cells 2,401,980 303,408 6,802,912 855,456
Seed cells 73,602 14917 98,811 41,327
Non-intersected cells 47,007 8,012 38,286 11,151
Total cells used 29,388 7,183 156,810 36,319
Isosurface triangles 56,543 14,535 307,278 73,739

TABLE V: Statistics of the correction step for the tsunami
isosurfaces of Table II and for the “dam break” isosurfaces of
Table Table III .

Tsunami Dam Break
Grid size 0.028 0.056 0.006 0.012
Mean vector norm  0.000218 0.000807 0.000130 0.000453

Max vector norm  0.009890 0.018360 0.001997 0.005511
St.dev. vector norm 0.000402 0.001253 0.000182 0.000550

could be to exploit temporal coherence between time-steps.
This would speed up the visual exploration of time-dependent
data.

We also plan to investigate the use of a better free-surface
detection method for trimming. The method of Marrone et
al. [28] requires the computation of a derived scalar field at
grid nodes which are close to both the isosurface and the free
surface. The method requires local information including gra-
dients and does therefore not add much to the total computing
time.
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