Software Scalability Engineering for Distributed Virtual Environments

H. Lally Singh*
Google and Virginia Tech, Member, IEEE

ABSTRACT

Distributed Virtual Environments (DVESs) must continue to perform
well as users are added. However, DVE performance can become
sensitive to user behavior in many ways: their actions, their posi-
tions, and even the direction that they look. Two virtual words may
be similar in terms of user experience, task efficiency, immersion,
and even aesthetics. However they may exhibit substantially dif-
ferent performance when many users are logged in. We discuss an
approach — Software Scalability Engineering (SSE) — that uses
load simulation and iterative modeling to locate causes of undesir-
able performance, experiment with changes, and verify improve-
ments to DVE systems. Presented here is a case study of using
the approach to determine the primary bottleneck of the Torque en-
gine. Once that bottleneck is identified, we continue to use SSE to
determine the primary cause of the bottleneck, and the primary con-
trolling factor for that user. SSE allows us to look at changing both
the engine software and the virtual world to improve performance.

1 INTRODUCTION AND RELATED WORK

Distributed Virtual Environments (DVEs) are a complex amalga-
mation of many systems with a critical sensitivity to their perfor-
mance. A primary challenge of DVE:s is scalability — supporting
many simultaneous users. The system’s scalability is sensitive to
performance — as performance degrades, users will stop using the
system. Unlike most systems scalability problems, users will stop
accepting the system before the system will stop accepting users.

Consequently, performance management is important during a
DVE’s development. With the complexity of the systems involved:
the physical simulation, the network synchronization, the virtual
terrain, tools, avatars, vehicles, and even the maximum velocities of
each can become performance factors. As some of these elements
can be difficult to change late in the development cycle, starting
performance management early in the development cycle can re-
duce the total work.

In this paper, we will cover the SSE process, and show its ap-
plication to a large commercial game engine. We will cover its ap-
plication in identifying the bottleneck resource, the software com-
ponent taking up the majority of that bottleneck, the controlling
factor of that component’s performance, and two different ways to
enhance it.

Like many systems currently deployed, this will be a
client/server system. We will be studying the server and thusly
some rather interesting parts of DVE systems (e.g. rendering) won’t
be analyzed. SSE does not require, or even prefer, a client/server
system — it will work just as well with any topology selected.

Distributed Virtual Environments come in many forms. Oliveira
et. al. [9] provide a broad domain model for analyzing them. Three
major categories can be formed from the network topology. A com-
mon architecture has a single server performing all synchronization
work, with all clients connected to it. Systems like this include

*lally @vt.edu
Tgracanin@vt.edu
fmatkovic@vrvis.at

Denis Graganin®
Virginia Tech, Senior Member, IEEE

Kresimir Matkovi¢*
VRVis Austria, Member, IEEE CS

Torque [5] and Quake [17] (releases I-IV). On the other end, there
are a variety of Peer to Peer (P2P) system architectures, where more
than one computer executes some part of the synchronization work.
As an example, the Hydra [4] system has each user’s computer act
as both a server to some part of the virtual world, and a client for
the user. A single “global tracker” is run to map regions of virtual
worlds to host IP and port numbers. They mention it being alterna-
tively implementable as a Distributed Hash Table (DHT). In these
distributed environments, additional concerns such as load balanc-
ing [11] occur. In that work, the spatial region to host mapping is
determined by cluster analysis of user positions.

The MASSIVE [6] system was a mostly peer to peer system with
a few centralized aura — region of interest — managers for each
part of the virtual environment. For hybrid P2P systems with a set
of servers and a set of clients, Morillo et al. [8] studied a “quality
function” for assigning clients to servers. They find little correlation
between that function and average system response. Instead, they
propose a mechanism to prevent CPU saturation, as that tended to
be the largest factor in system performance.

Independent of the network topology, many DVE systems are
using multiple threads of execution. Monkkonen [7] provides an
introduction to how the work can be split up across multiple proces-
sors on a single system. Three models are presented. First, physics
can be run in a separate thread and synchronized per cycle. Second,
logic, physics, and rendering are run in independent loops, in sep-
arate threads. Finally, the logic and physical work for each object
is assigned a separate thread. Abdelkhalek and Bilas [1] modify
Quake to use multiple threads. At eight threads, they were able to
raise the player capacity by 25%, but were spending 70% of their
CPU time in lock contention and waiting. Zyulkyarov et al. [19] use
Software Transactional Memory to reduce contention. They peak at
less than 26% transaction aborts, but the prototype compiler caused
too many problems to give results useful for comparison.

System performance affects user task performance. For a tradi-
tional first-person shooter game, Quax et al. [10] provide an analy-
sis of the effects of latency and jitter on user performance, as mea-
sured by the in-game score in Unreal Tournament 2003. Using a
router that simulated specific latencies and jitters, they found that
users had noticeable impairment when round-trip time (RTT) la-
tency surpassed 60 ms.

Watson et al. [18] studied system responsiveness and its effect on
user performance. System responsiveness is the time-to-feedback
from any user action and the response being perceivable by the user
in the virtual world. Originally done as a study based primarily
on local systems with single simulators, it studied the effects of dis-
play lag on users executing tasks. Among the conclusions were that
sensitivity to system responsiveness was task-dependent. Unfortu-
nately, no similar study was done for the distributed case, where
local simulation continues providing the user fast feedback on their
actions, but may have their results changed (or undone) upon recep-
tion of new data from remote sources.

We present a methodology derived from Software Performance
Engineering (SPE), an iterative, model-based software engineering
process. Smith and Williams [16] describe it in detail. Our own
methodology, Software Scalability Engineering (SSE) is a deriva-
tive of it. SPE is a general-purpose process applicable to many sys-
tems, but does not directly address the effects of complex human
behavior or static assets (e.g. 3D models) of the system being built.

Abdelkhalek et al. [2] analyzed the performance of Quake using
an analysis similar to benchmarking Online Transaction Processing
(OLTP) systems. Using CPU-level events, and built-in system in-
strumentation, they replayed individual user-session recordings for
load simulation.

Our SSE process was introduced in [14]. It was elaborated in
[13], with a very small — only 5,000 lines of code — two player
system. In that work, we determined the cost, in simulation time,
of adding additional objects to the virtual environment.

2 CHALLENGES IN SCALING DISTRIBUTED VIRTUAL ENVI-
RONMENTS

Distributed Virtual Environment (DVE) systems are large and com-
plex systems. The standard that they must meet — the quality of
experience for each user — is also complex. When trying to make
DVEs able to support a large number of users, that standard must
be kept as users are added. Unfortunately its elements: the respon-
siveness of the system, the accuracy of the environment, and its
consistency of events, each have many contributing factors. Addi-
tionally, the contributing factors can often depend on some unique
properties of individual DVE components.

The state space of a DVE system includes the positions of all ob-
jects, players, buildings, and terrain. Their individual state spaces
can include their geometry, position, orientation, health, sounds
emitted, transient graphical states (such as burned or glowing), blast
marks, or task-related modes. In aggregate, the synchronization
state space includes the last-known state of every object in every
host’s memory. Depending on the synchronization mechanisms
used, inter-object visibility can be a major factor in the state-update
frequency between hosts. Users occlude one another, and can con-
strain the amount of data they each have to receive in order to main-
tain a live view of the environment.

Additionally, the performance characteristics of a DVE system
can be quite sensitive to changes in that state space. A cluster of
objects in one area can cause one part of a scene-graph’s data struc-
ture to contain substantially more objects than average, causing dis-
proportionate simulation times for that region. Changes to small
numbers of otherwise—insignificant objects (e.g. foliage) can sub-
stantially alter the synchronization load on the system if the inter—
visibility of other objects is altered. Atop of all this, changes in
human behavior can be very hard to predict, and result in substan-
tial changes to the resulting load applied to the system.

Finally, the resulting level of reality — the Quality of Experi-
ence (QoE) perceived by the users is sensitive to the performance
of the system. First, the longer the interval between the user’s host
sending an update and receiving a world-state that contains the re-
sults of that update directly results in visible reaction lag from the
DVE. Second, the frequency between updates directly affects error
from client-side prediction, such as dead—reckoning [3]. In systems
with parallel computation, such as multi-threaded DVE servers on
multi—core machines, different rates of simulation across the virtual
environment can have substantial fairness repercussions. Finally,
the simulation rate on the server — and the resulting receive rate
of world-state updates by a user’s host — can directly affect their
performance on specific tasks [12].

The individual problems above: the size of the state space,
the sensitivity of performance to relatively small details in the
system, and the complexity of managing the Quality of Experi-
ence, are inherent elements of a DVE’s complexity. Unfortunately,
the elements also compose into further complexity. The inter-
dependencies between the geometric assets of the virtual world:
terrain, buildings, objects, foliage, etc., can affect user behavior.
The elements can affect the system state space, resulting in changes
to the resulting performance. During the development of a DVE
system, these changes can be frequent. Unfortunately, the resulting
changes in system performance — and the ability of the system to

satisfy its performance requirements — can be just as variable.

To address the relationships, we will have to understand changes
in one component and invalidate existing understanding of others.
For example, a change in the virtual environment can change how
often a software component is run or instantiated.

If these components were small, this problem may be directly
manageable. Sadly, they’re quite large. For the Torque engine we
discuss later, the total source code — headers, source, and parser
specifications — total nearly 350 thousand lines of source code.
The virtual environment specification — for a small environment
with a handful of tiny buildings — is a half-gigabyte of data. The
scripted data and behaviors in that level, supporting a crossbow,
a player that moves in a loop, and the basic user interface — is
another 25 thousand lines of source code. Common data and be-
haviors, in a separate library used by this level, are another twelve
thousand lines of source code. To address size, we have to be able
to quickly classify the system components’ impacts on the relevant
elements of QoE.

The element of user behavior is the final part of the challenge we
can address. User behavior is sensitive to both the virtual environ-
ment and QoE, and is a large new factor all by itself. The places
the users go in the virtual environment, how those movements clus-
ter, and all their actions can all affect the load on the underlying
DVE system. Additionally, these behaviors can be complex and ag-
gregate — users may act together, against each other, and involve
complex strategies that can result in modal load!. To address user
behavior, we have to sample it from live experiments. The process
we envision uses dependencies and invalidation, quickly classifies
component impact on QoE, and includes user behavioral samples
from live experiments.

3 SOFTWARE SCALABILITY ENGINEERING

Our methodology is strongly derived from Software Performance
Engineering [16], tuned for an instrumentation—driven cycle with a
focus on the construction of DVE systems. Denoted Software Scal-
ability Engineering (SSE), it attempts to assimilate the effects of hu-
man behavior and static assets into the simulate—analyze—evaluate
iteration.

Specific focus is given to the distinguishing traits of DVE sys-
tems: (1) when the load is steady, the system runs in a steady-state,
continuous form; (2) performance of the system is expected to vary
with available resources, gracefully adjusting as they change; and
(3) large components of the system load are determined by both the
human behavior in its players and the system-specific geometric as-
sets created to populate the scene graph.

The resulting process is shown in Fig. 1.

In the process, we typically identify key resources that are areas
of concern in the effective performance of the system. The first in-
cludes the available CPU capacity, as a rate consumed. Network
bandwidth and memory may also be concerns. Developers may
choose to focus on other resources that become scarce at runtime,
such as dedicated hardware (e.g. general-purpose GPU units). If
they have an accounting method established, the majority of re-
sources should be modeled with this method.

We define a DVE’s scalability as the relationship between the
system’s resources and the DVE’s effective capacity. This latter
value is the maximum number of users that (1) can fit into the sys-
tem and have it run without crashing and (2) continue to find the
experience sufficient to meet their goals. This latter clause requires
that system behavior and performance continue to be acceptable to
users, as a DVE may well be able to process user logins well beyond
the point where it can provide reasonable service.

IThat is, the load on the system software is in different phases — perhaps
one each for a group approaching a position, attacking it, and then moving
on.

A ish Identify Critical Identify
Performance Performance Execution Critical
Risk Objectives Paths System States

Preflight

2
ol Update Gather User Build/Update
&) . Behavioral "
Environment Simulator
2 Data
B
g o 22
<| © S
> D @
[6) 58
2 OF)
8l 3 :
£ Evaluate Build/Update
29 Models
fri] e Model Model Insufficiently
© Accurate
g
= v
Simulate Instrument Evaluate
Engine Assets

Figure 1: Analysis and modeling procedure.

The phases of the SSE process are summarized below and sum-
marized in Figure 1. Interested readers are directed to more thor-
ough descriptions in our prior discussions of it [13, 14]. Space in
this paper is reserved for an in—depth case study with Torque.

3.1 Preflight

When beginning the scalability engineering process, or the engi-
neering project as a whole, some initial work up-front is needed.
Determine: what levels of performance and scalability are de-
sired, and how much engineering effort they are worth; which soft-
ware components and data structures compose the performance and
scale-critical paths through the software; the critical variables that
determine load, and what performance envelope we want the sys-
tem to exhibit under that load.

The overall process is intended to be incremental, with initial
phases using very coarse models, instrumentation, and simulators
at the start. We heave four stages in preflight. In Assess Perfor-
mance Risk, we determine what levels of scalabilty are desired, and
how much engineering effort they are worth. In Establish Perfor-
mance Objectives, with the engineering budget known, we deter-
mine what levels of performance are desired. In Identify Critical
Execution Paths, we identify the critical paths in code that drive
performance. Finally, in Identify Critical System States, we identify
the critical variables and data structures involved in the execution
paths we identified earlier.

3.2 The Outermost Cycle: Analysis

The analysis phase is the head of the iteration loop. Initially, it
is entered after preflight, and re—entered after changes to the vir-
tual environment or substantial changes to the DVE software. First,
gather human usage data to determine how users commonly end
up using the system. A two-phase analysis is done to analyze the
gathered data. First, each recording is played back individually. At
a sample interval relevant for the DVE, categorize the user current
behavior. Next, combine all the frequencies of all the categories.
Finally, modify or re-implement the client software to behave rep-
resentatively like the observations.

Upon re—entry of the Analysis cycle, a step is prepended. We ad-
just the virtual environment to allow more desirable performance.
After the environment has been updated, new behavioral data is
required, and the analysis cycle begins its next iteration. During
normal engineering, an occasional execution of the Analysis cy-
cle, even if no single change seems to require it, is recommended.

Small changes can sometimes be surprising in their affects on user
behavior.

3.3 The Middle: Engineering

If the engine does not perform sufficiently well, update the engine
and restart. Possibly modify the DVE system software as seen fit.
The user behavior shouldn’t normally change for changes to the en-
gine, avoiding the need to update the user behavior executed by the
simulator. DVE system engineers may choose to do so if they be-
lieve that the changes are sufficiently substantial. When complete,
the engineering cycle restarts at the “Build/Update Model” stage.

If the DVE itself is infeasible with current technology, then mod-
ify it in the “Update Engine” phase and go back to “Gather Behav-
ior Data” for the new DVE. This closes the Analysis Cycle. If the
models are sufficiently accurate and show a sufficiently—performing
DVE, then no additional cycle is needed and one may consider the
process done. If there is any doubt, a new iteration through the
Analysis cycle (without modifying the level) may be used to verify
that assumptions on user behavior still hold. Simplify the instru-
mentation to reduce overhead, but leave enough to allow observa-
tion of the system in production.

3.4 The Innermost Cycle: Modeling

We use an incremental analyze—and—simulate method to both let us
scale the effort, and focus it on the most quantitatively significant
parts of the system. When we find unacceptable resource usage, we
construct a more detailed model. We construct or update the load,
resource requirement, and performance models. Then we analyze
the structure of the geometric assets, to determine their effects on
load.

First, place instrumentation into the engine to validate and cali-
brate the models. Then, run the load simulator against the engine,
enable instrumentation, and record data. Finally, looking at the in-
strumentation data, determine if the model gives enough accuracy,
if the engine can provide the performance required, or if it is even
objectively feasible to build such a DVE with the performance re-
quirements. If the model is insufficiently accurate, go back to the
“Build/Update Models” phase. This back-arc completes the Mod-
eling Cycle.

3.5 Load Simulation

The load simulator is based on observed human behavior collected
through a controlled human experiment. Users are placed into a
facility with computers running the DVE. Typically this will be a
computer lab. Each computer records every update sent between
each client machine and any intermediaries. Additionally, the com-
puters that execute system—wide services (e.g. a server running the
canonical simulation) will have instrumentation attached for their
resource utilization. With a representative group of users, in a rep-
resentative setting, the data collected should be suitable for a load
simulator. More than one phase of the study should be executed,
with differing numbers of users.

The collected data is then analyzed to determine behaviors, tac-
tics, important locations in the virtual world, and strategies. The
observed behaviors are necessarily terrain-specific, and attempting
to extrapolate more general behavioral rules would be unsuitable.

Each behavior, tactic, and strategy is converted into a set of soft-
ware routines. Once written, the software routines are integrated
into a copy of the DVE software that runs on a user’s machine.
It synthesizes avatar movements and actions using the local scene
graph as its knowledge base for the current virtual environment
state. For example, it may identify an opponent in the scene graph,
notice that it has a clear shot, and fire at the opponent.

Balancing the differences between the capabilities of Al systems
and human participants is a key concern in ensuring realistic load
simulation. The problem has been a concern in game development

for some time. In our own work, we use general assumptions about
the virtual environment to guide strategy — e.g. get near the center
of town to find opponents to attack — and simple scene analysis to
guide tactics. In terms of aiming, we balance the human’s ability to
predict their target’s movement with the AD’s ability to exactly aim
at the target’s current direction.

3.6 lteration Strategy

Preflight is critical for determining both the goals of the work and
the space in the program, in terms of code and data, that the work
will cover. It will have the most substantial impact on the rest of
the SSE process, as it will form both the basis of the models and the
criteria used to evaluate a simulation’s results. For most cases with
client/server systems, we expect preflight to identify the server-side
code alone as origin of the critical code path and data.

After executing preflight and having constructed the load simu-
lation, the first iterations of SSE should be small and exploratory.
These early iterations should be identifying the major components
of system performance. The instrumentation should quickly show
where the resources are being expended, at least in a course-grained
fashion. Further iterations construct a more detailed understanding
of those major components, and explore their controlling factors.
Final iterations experiment with altering the system at a software
or virtual-environment level to achieve the goals determined in pre-
flight.

In the Torque case study below, we start with top (1) to iden-
tify the CPU as the primary component of system performance —
as the bottleneck, additional availability of other resources would
have little effect. Through additional iterations, the primary user of
the CPU is found to be player simulation, then the collision detec-
tion part of that simulation. The player position, in relation to other
players, is the primary controlling factor over collision detection
time, with a polynomial relationship. We consider moving player
simulation to other threads, but decide to alter the virtual environ-
ment to cause fewer simultaneous collisions in the same area.

4 SSE wiTH THE TORQUE ENGINE

We will trace through the entire SSE process with the Torque en-
gine. Torque is a single—threaded engine with input processing,
simulation, and output processing all branching off of the same pri-
mary loop.

However, the player’s clustering in the level is quite relevant.
Figure 4 shows the distribution of players across the virtual envi-
ronment. The original level that ships with Torque is listed as “A.
Original.” As discussed later, this clustering correlates to the col-
lisions that will occur between users and anything they fire at one
another.

4.1 Preflight

For Torque, we don’t have a risk model or specific scalability objec-
tives. Instead, we have the general desire to understand the engine’s
performance and what its contributory factors are. The engine was
licensed and now it’s time to determine its performance. When we
understand the current performance and the factors that control it,
we can make determinations for how we want to realize the DVE
we want to build.

We’ll start with a basic performance-factor analysis. With DVEs,
performance is a critical factor that we shouldn’t allow to surprise
us later in the development process when substantial resources have
already been invested.

The critical paths for our example are the core loop of the engine
on the server.Input from the network is processed, as is a 31.25
Hz simulation cycle, and a 10 Hz send-updates cycle. Our critical
state is the scene—graph. If the network I/O components were un-
der consideration, the per-connection data structures would also be
considered critical.

4.2 Initial Cycle

The initial cycle is a pass through the analysis, engineering, and
modeling cycles. We start with building a load simulator, and a
very initial model. A small trick for quickly determining bottleneck
resources is discussed.

4.2.1 User Behavior

Modeling the general behavior of human participants is clearly in-
feasible in the general case, but it can be possible within the limited
scope of how the behavior affects load factors on the system. For
Torque, we have a fairly simple version of the problem. The play-
ers are all equals, and fight each other. Group dynamics, if present,
seem to be lost in the normal variation found during user study. The
data came from a pair of user studies. Each study was a one-hour
session of college students playing the game against each other.

With it, we took recordings of each user and analyzed them sepa-
rately. Each recording was played back individually, and the user’s
behavior noted in sub-minute intervals. As the game was very sim-
ple — one weapon, small town, and only kills counted for points
— the number of tactics people used proved small. Recording each
tactic used, and how often, we built a characterization of their ac-
tivity.

4.2.2 Load Simulation

To convert the model into load, an Al-driven synthetic player is cre-
ated. It uses an internal map of the level, and the current location
of it’s own avatar and other players nearby as its knowledge base
for action. We intend for each instance of this modified client to
simulate the load of a single human player. It executes the behav-
iors in the distribution observed, using just enough logic to move,
select targets, aim, chase, and fire. The virtual world used is almost
completely open, smooth hills.A table of way—points and direct lin-
ear motion towards them was used for navigation. Using this list of
tactics, and distribution of their usage, we build a simulator. More
detail on load simulation construction is available in [13] and [14].

To provide equivalent load of some number N users, we run N
copies of the load simulator simultaneously. We run them on one
or more separate machines from the Torque server to prevent CPU
starvation on the server.

4.2.3 Model Construction

‘We mentioned a little trick earlier: we run a quick load simulation
to observe the system running, with no instrumentation or assets
analyzed. In terms of SSE, this is a run through the modeling cycle
(with some phases skipped) to determine the current bottleneck(s).
The instrumentation that the operating system provides — band-
width counters and top (1) — provide sufficient instrumentation
for a first-run modeling pass.

Even at high load, Torque does not use a fraction of the mem-
ory or network bandwidth available on the server — the available
technology and reduced costs have significantly improved their sit-
uation since its initial release in the late 1990s. However top (1)
does reveal substantial CPU usage. Single—core performance has
not kept up with Torque’s needs as well as memory and network
availability. It only uses one CPU, but that single core does get sub-
stantial use. Concerns for growing scaling the DVE rest on single—
core performance.

So, we decide to focus on CPU usage on the critical code paths
in the system. This includes all items dispatched from the primary
loop in Section 4.1: input, simulation, output. We’ll start by instru-
menting the total time spent in each, and the total time spent in each
core loop iteration.

4.2.4 Asset Analysis

Currently, our model is rather simple: the CPU is dominant, that’s
all we know. We don’t have any use for any metrics to collect from

the graphical assets. In our current Torque setting, we only have
one geometric model for the player, one for the projectile, and one
level. While we may find some other discriminating features later
on, we don’t have anything to measure right now.

4.2.5 Engine Instrumentation

As mentioned earlier, we study the primary loop in the software,
and the three top—level elements it invokes: the input processing,
simulation, and output routines. Initially, high-resolution times-
tamps for the start and end of the loop and all three elements are
recorded. We use our own ppt [15] tool, designed exactly for this
type of work.

4.2.6 Simulation

Our simulation setup is quite simple. We use Virtual Machine (VM)
instances for clients, and one more for the server. The VMs are
hosted on Amazon’s Elastic Compute Cloud (EC2), each running
“small” instances with a single 1 GHz CPU (1 EC2 Compute Unit)
and 1.7GB of RAM. While we have not been able to ever get a
guarantee from Amazon about how to get the server instance on
a separate physical machine than the clients, we also run a lot of
simulations with stable results between them— it’s unlikely that all
the simulations ran with the clients (often just 3-6 instances) and
server together.

Each instance is a copy of a pre-configured system with the en-
gine and level already installed. We run the server first. It indi-
cates, at roughly six—second intervals, how many users are logged
in. Clients start up and launch load simulator instances that connect
to the server.

When the server indicates that it has reached a few (e.g. three to
five) clients, we have ppt “attach” (that is, begin listening) to the
server and save the records to disk.

In early iterations, a simple function profiler such as gprof is
perfectly acceptable to identify major users of the CPU. However,
profilers are discouraged for use as a primary source of instrumen-
tation over the run of the SSE process. They require a substantial
understanding of the code base to be able to interpret their output.
For detailed instrumentation, the collection overhead is substantial,
and can take substantial effort to analyze.

Additionally, they have a tendency to encourage ‘“whack-a-
mole” optimization, where the first entry in the list of largest CPU
users is optimized until it’s no longer the first. The cycle repeats
with the new topmost entry, until performance is improved. The re-
sult is often substantial optimization work with little understanding
of the system’s overall performance structure.

Hand-instrumentation with a tool like ppt, while certainly te-
dious up—front, provides the opportunity to only pay the runtime
instrumentation costs of relevant data, have it saved in easily-
analyzable form, and have the instrumentation available to the pro-
gram itself, for possible runtime adaptation. A handful of simple
timestamps quickly identify the largest users of the time, in terms
of the system’s overall structure and are easily annotated with pa-
rameters (e.g. the number of elements checked in a collision search)
to identify why the most CPU intensive components are invoked as
many times as they are, and why they are the most intensive.

4.3 Modeling Cycles

The overall modeling process is simple: start with an overall metric
of system performance, then add measurements in between differ-
ent stages of work. Measure with different numbers of synthetic
players attached. Many stages of work will likely act in either con-
stant or linear time, but some won’t. For those that do, their models
are constants or linear functions of the number of logged-in users.
For those stages that aren’t constant or linear to the number of
logged-in users, “drill down” with additional instrumentation and
simulation runs. Stop when a satisfactory model is determined. As

we are studying the bottleneck identified: single—core CPU time,
we track down which code consumes the CPU’s time in a non-linear
and non-constant fashion. The result is a model in O(f(N)) format,
where N is the number of logged in users, and f(N) is the amount
of time required to execute the code we identify.

4.3.1 Data Collection

As mentioned before, we use the ppt [15] tool for data collection.
It uses frames of data, each atomic, to assemble blocks of related
data together. The ppt tool makes each frame is made a component
of a discriminated union. When ppt attaches to the program, the
program attaches to a ppt—created shared memory buffer. The pro-
gram writes frames into the buffer, and ppt reads them out, saving
them to disk.

As mentioned before, we have four primary points of instru-
mentation: the core loop, input processing, physical simulation of
the virtual environment, and output. Their frames are coreloop,
input, simulate, and serialize, respectively.

The coreloop represents a cycle of the top-level loop in
Torque. Torque server is single-threaded, and works off of a stan-
dard event loop.

input and serialize record the start time, end time, and
the client involved. The last is simulate, representing the bulk
of our data and the focus of our analysis. We create a simulate
for each simulation step of each object in the virtual world. We start
with an object identifier, an integer representing the runtime type of
the object, it’s position, and the start and end times of the simulation
step. This set of data for simulate was enough to start with, but
proved insufficient when more detailed performance models were
needed. Additional iterations added more data to simulate.

4.3.2 lterating the Modeling Cycle

We ran the modeling cycle quite a few times. The simulate
frame consistently took the vast majority of CPU time during sim-
ulations, even at low (12 users) load.

Every object that needed simulation had a single method
processTick (ticks) that was invoked once per simulation
cycle. The ticks parameter of coreloop indicated how much
time to simulate, as a multiple of 32 milliseconds. This value was
constant for the entire loop iteration, including all simulation steps
executed. ticks was adjusted in every core loop iteration to make
the interval of time being simulated match the observed interval be-
tween calls to the simulation system.

Each individual implementation of processTick (ticks)
looked at the current state of the scene graph, treating equally the
objects who have been simulated for the current cycle, and those
not yet. Each moving object would be moved along its velocity
vector for the time step and then checked for collisions. Lower val-
ues of t icks would result in a more precise physical simulation,
as the entire scene-graph would have been fresher and less virtual
distanced would be traveled between collision checks.

Our instrumentation identified players’ avatars as taking the most
simulation time, by far. Players themselves took 72% of all CPU
time in the system. The rest of time in simulation, another 1.2%,
was mostly spent simulating arrows. The remaining 16.2% of CPU
time was spent in synchronization with client machines.

4.3.3 Modeling Player Simulation

The player’s simulation step has a primary loop that attempted, up
to three times, to find an object to collide with, and/or a collision
with a rise in floor height that required an upward step. Both could
be found simultaneously.

For the first iteration, we split processTick () into four parts:
a header, a call to the parent types’ processTick (), a “physics
section”, and a tail. The header and contents of the “physics sec-
tion” are described below. The remainder of the method took a

small and stable amount of time to run. In the second iteration then
split up that “physics section” into parts. The original version of
that section was essentially a set of calls to six methods.

A simplified model of the code for
Player::processTick () is shown below. These val-
ues are based off of an N = 60 simulation under the original
level.

Player::processTick () { // (Abbreviated Form)
// Small, Constant Factors ~.006 ms
updateMove () // ~.250 ms
// Other small constant factors, “.0012 ms
updatePos () // 1.6 ms

}

After that iteration, we found updateMove () and
updatePos () to have nontrivial execution times. They

also roughly correspond to the movement and collision-detection
phases, respectively. The others totaled to roughly 7.2us. The
updateMove (), while nontrivial in execution time, had a very
low variance: 0.007ms2. The updatePos (), however, had a
variance of 20.45ms2. It will be the focus of the last iteration.

4.3.4 Collision Detection in updatePos ()

Through algorithm analysis of the code in the method, com-
bined with instrumentation, the collision count was found to
be the largest factor of updatePos (). The time spent in
Player: :updatePos () is shown on the vertical axis in Fig-
ure 3. The values are spread horizontally according to the number
of collisions processed in that data point. We have a simple model
for Player: :updatePos (), a polynomial for the number of
milliseconds required to run, based on the number of collisions (c):

fupdatePos = 0.0540. 16501'3(milliseconds) (D

The equation is based on a simple curve-fit of the data, initially
assuming that the function was in the family y — yg = Ax5. We
compare it to collected data for varied values of N in Figure 2.

5 g 36

Figure 2: Runtimes for Player: :updatePos () vs Collision
Counts, vs Model of Same (Line), for N=5,16,36

4.3.5 Evaluation

We have a time—exponential step in physical simulation, and it con-
stitutes the majority of where our single core’s processing time is
going. The key metric we intend to construct is the distribution
of runtime of a player’s physical simulation, e.g. a single call to
Player::processTick ().

Equation (1) models the time spent in collision detection, as
shown in Figure 3. The values of this factor (c) drive the amount of
CPU time that Torque needs to support a virtual environment.

4.4 Engineering: Evaluating Multi-threaded Conversion

To improve the relationship between CPU time availability and
our requirement, we can also try to parallelize the engine. With
72% of the simulation time going to one method in one class —
Player::processTick (), we only need handle this one case.
So, how much can we determine from what we’ve already discov-
ered, for the feasibility, cost, and expected benefits?

Theoretically, we could run player simulation in a secondary
thread, and everything else in the primary thread. Primarily, the
issue is mutual exclusion. When one thread accesses an object, oth-
ers must be excluded from modifying them. The amount of work
here is doable, but would require a good amount of work. The
amount of code that would require modification for adding mutexes
is unknown. Additionally, testing for latent synchronization bugs
is rather difficult. We may get many of the primary areas of con-
tention, but miss just one or two that can become problematic later.
A small change in how the threads are scheduled such as a kernel
upgrade or multi-threaded process on the same machine contend-
ing for processor time can expose latent synchronization bugs that
no amount of load testing in the current configuration would likely
find.

With this much work and risk, some consideration is necessary.
The work is feasible, but costly and rather risky. The benefits can
give us roughly triple the current capacity — assuming we can
move almost all of that 72% of player simulation onto other avail-
able CPU cores. However, we haven’t figured out if we need this
much capacity — we haven’t designed the DVE yet. As we men-
tioned in Section 4.1, we haven’t determined how we want to re-
alize the DVE yet. Instead of modifying the engine software — a
completely new piece of work to resolve a concern we haven’t de-
termined is a problem yet — we can build the DVE knowing that
collisions cost us dearly.

4.5 Analysis: Experimenting with Level Alterations

The level that we currently have is the one that shipped with
Torque, as an example to start with. Instead of creating a new
level from scratch, we intend to alter this example level signifi-
cantly. This way, we always have a workable level, even if it may
be schizophrenic mid—development.

While we have a high—level understanding of what we want our
artists to make the level into, there is certainly some flexibility in
the small- and medium-scale structure of the level.

We also know that the example level does not perform as well as
we desire. In user testing, with only fifteen players, the performance
is jumpy, and we’re hitting the CPU’s capacity. Now that we have
tabled the idea of enhancing the engine’s performance, we should
consider altering the level to enhance performance.

Looking at the data we already have, we have positional data in
simulate. That data is shown in Figure 4 under “A. Original,”
the primary region in (x = —100,y = —100) to (x = 750,y = 500)
is the central inner area of a small village. The data was taken from
instrumentation of the player simulations only.

In Figure 4 we have four variations of the virtual environment.
There is one particularly dense spot at approximately (x =250,y =
200), the dark square in Figure 4 (A). Players are apparently often
there, and likely more than one at a time.

4.5.1 Update Environment

The level modification was incredibly simple: place another build-
ing in the middle of the densest region — the middle of the virtual
village. We put a new building there to try and diffuse player po-
sitions. Hopefully, users would find other areas more useful, and
those areas would have enough space to accommodate them with-
out having users bump into one another. That attempt is shown as
the “Modified” version (B).

We are assuming that collisions correlate with spatial density.
We can verify that, and may do so if needed. However, it’s easier to
just try altering the level and seeing if that’s enough. SSE has the
property that after the load simulation is set up, experiments can be
executed for modest effort.

To compare that change versus a random change in the terrain,
we make two more altered versions. First, we put another building
on the opposite side of the virtual village, opposing the dense spot.
This is denoted “Original-2” (C). Next, we take our modified ver-
sion and put another building next to the one we added in (B). We
denote it “Modified-2” (D). A large tower is placed off to the side
of the village, blocking a key snipe—point — a hill to the left of the
pictured area — from working. It occludes an existing tower. The
effect was better than expected. The building density in the village
increased enough that the load simulators moved out to a nearby
clearing.

4.5.2 Update Simulator

For each variant, the load simulators have the coordinates of the
new buildings added to their internal tables, and are otherwise un-
touched from the original version. We believe that their behaviors
are sufficiently abstract that they can continue to accurately simu-
late human behavior with these changes. If we find useful results
in this experiment, another user study may be prudent to adjust the
load simulator to validate this belief.

4.5.3 Simulate

In our hypothesis modification (“Modified” (B)), the load simula-
tors routed around the new building. A combination of the provided
cover and decreased available area in the region pushed the simu-
lated players out to other areas where they could find other players
to interact with. Weaker versions of the same effect were observed
in the other variants “Modified-2” and “Original-2.”

A. Original
20 — (]

B. Modified

15 —

=
=)
|

o
3
|

o
[S)
|
[

C. Original-2 D. Modified—2

Time (ms)
= = N
o w o
| | |

o
]
|

o
[S)
|

Collision Count

Figure 3: Collision Detection Times vs Collision Counts at N=30,
with our Model Overlaid as a Line

Looking at Figure 4, we have quite a variation in user density.
The darkest point in the original map is substantially lighter in our
“Modified” (B) version. It is still present in our first random vari-
ant, “Original-2” (C). The combined intentional and random vari-
ant, “Modified-2” (D) has a reduced, but still substantial, dark spot
there. In terms of reducing areas of high density, the intentional

modification alone seems the most effective. These additional lev-
els give insight into the effectiveness of our experimental technique:
putting a building in the densest spot in the level.

Figure 4 shows data acquired from the ppt frames to show
movements over the instrumented time interval. That way, we
can observe the simulation of individual objects in connection
with the other performance data we collect. The updated instru-
mentation was used in a four simulations, each with 60 users.
All sub-plots show the data of five—thousand randomly selected
player simulation steps. Each step is a single invocation of
Player::processTick () on an individual object.

If we find this level change beneficial, another user study is
worthwhile, to validate the results of the simulator. However, we
should first determine if it’s worth going that far. Figure 3 shows us
how well the model holds up against all four levels.

In terms of overall computational load, we found that the original
average time through the main loop was 10.66ms, and the modified
level 10.36ms — a three-percent improvement. Either way, a 90 Hz
simulation rate is would be possible, had that average been stable.
However, the variance was 43.42ms*> — a single standard deviation
at over 60% of the mean. While we can handle a reasonable rate
most of the time, there are two problems. First, we have to sub-
stantially over-allocate CPU power to support the system, to handle
transients. Second, the variance is going add jitter to t icks. This
second factor is rather substantial, as users can easily get surprised
with particularly bad simulation when ticks is on the high side,
and start compensating by distrusting the accuracy of the system
simulation. That will detract, substantially, from the user’s experi-
ence.

In that light, we have been substantially more successful. The
variance in simulation time was reduced to 20.65ms2. During the
longest times through the main loop, peaking 101ms in our sample,
the engine was falling behind real-time in its update rates to clients,
and simulating much longer discrete time steps — higher values of
ticks — at once.

The other two levels had worse mean runtimes, 10.91ms for
“Modified-2” and 10.99ms for “Original-2.” The variances were
86.05ms? and 87.32ms?, respectively.

4.5.4 Evaluation

For the amount of work done — less than a day of level editing and
a day’s verification, the resulting work is encouraging. The change
in mean is fairly small, but the original level’s large variance sub-
stantially affected how often the single-thread’s CPU core would
saturate. The lower variance both meant that we would stay within
a smaller processor—time budget, as well as utilize the CPU better.

In terms of level analysis, our modification strategy looks sen-
sible, if simplistic. A single modification to the level — placing a
building in what was the densest part of the level, did substantially
improve the system’s ability to handle load. Whether the effective
capacity of the system, in terms of how many users could fit in the
virtual world before feeling too cramped or otherwise uncomfort-
able, would require further study.

Seemingly small changes can have large effects in our system.
For example, a new automatic weapon might change open—field
combat to a form of trench warfare, invalidating everything we’ve
studied about user behavior and their spatial density in the virtual
world. As changes are made, even if each is small, the analysis cy-
cle should be re-executed. User study results should be compared
against studies prior to determine if users have changed behavior.
The load simulator should be run to verify that the current set of
changes results in expected system performance.

5 SUMMARY AND FUTURE WORK

We have introduced Software Scalability Engineering (SSE) and
shown it through a substantial example. SSE has a multi-layered

A. Original B. Modified C. Original-2 D. Modified-2
2000 —
1000 —
> 0o -
-1000 —
[[[[[[[[[[[[[[[[
-1000 0 1000 2000 -1000 0 1000 2000 -1000 0 1000 2000 -1000 0 1000 2000
X
Frequency
0 75 150 . 225 . 300 . 375 . 450 . 525 . 600 . 675

Figure 4: Original (A), Intentionally Modified (B), and Randomly-Modified (C,D) Level Densities, 5000 Randomly—Sampled Points Each

approach for iterative discovery and experimentation with a DVE’s
performance. Early iterations can determine the current state of
performance and the its affectors. Then, we can “drill down” into
the details of what drive these performance—controlling elements of
the system, to determine their controlling factors. Finally, we can
experiment with ways to reduce the load on bottlenecks, through
manipulation of those factors.

We started by covering Software Scalability Engineering (SSE)
in detail. We then applied SSE to the Torque engine. SSE gave us
deep control over the scope and breadth of our work. Starting with
a pair of identical user studies to construct a load simulator, we
quickly used top (1) and a network monitor to isolate the primary
bottleneck when scaling up users — the single—core performance of
the host. Through roughly a half-dozen iterations through the cy-
cle, we have identified the system bottleneck’s main user: player’s
collision detection; and identified its largest factor: the spatial den-
sity of players.

When initially discovering the primary user of the bottleneck re-
source, we evaluated the work and benefits of multi-threading the
engine. Instead of deeply affecting system behavior, and taking the
risk of complex multi—threaded bugs, we evaluated changes to the
virtual environment itself for improvement in system performance.
Here, we completed a reasonably successful experiment in reliev-
ing pressure on that bottleneck using a modification in the virtual
terrain.

REFERENCES

[1] A. Abdelkhalek and A. Bilas. Parallelization and performance of in-
teractive multiplayer game servers. In Parallel and Distributed Pro-
cessing Symposium, 2004. Proceedings. 18th International, page 72,
April 2004.

A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior and perfor-
mance of interactive multi-player game servers. In Cluster Comput-
ing, 2001.

S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and S. Ran-
garajan. Accuracy in dead-reckoning based distributed multi-player
games. In SIGCOMM 2004 Workshops: Proceedings of ACM SIG-
COMM 2004 workshops on NetGames '04, pages 161-165, New
York, NY, USA, 2004. ACM Press.

L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan. Hydra: a massively-
multiplayer peer-to-peer architecture for the game developer. In Pro-
ceedings of the 6th ACM SIGCOMM workshop on Network and system
support for games, NetGames ’07, pages 37-42, New York, NY, USA,
2007. ACM.

GarageGames. Torque game engine.
http://www.garagegames.com/products/browse/tge/.
C. Greenhalgh and S. Benford. Massive: a distributed virtual real-
ity system incorporating spatial trading. In Distributed Computing

[2]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

Systems, 1995., Proceedings of the 15th International Conference on,
pages 27-34, May 1995.

V. Monkkonen. Multithreaded game engine architectures.
http://www.gamasutra.com/view/feature/1830/.

P. Morillo, J. M. Orduiia, M. Fernandez, and J. Duato. Improving the
performance of distributed virtual environment systems. /[EEE Trans-
actions on Parallel and Distributed Systems (TPDS), 16:637-649, July
2005.

M. Oliveira, J. Jordan, J. Pereira, J. Jorge, and A. Steed. Analysis
domain model for shared virtual environments. International Journal
of Virtual Reality, 8(4):1-30, December 2009.

P. Quax, P. Monsieurs, W. Lamotte, D. D. Vleeschauwer, and N. De-
grande. Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game. In
SIGCOMM 2004 Workshops: Proceedings of ACM SIGCOMM 2004
workshops on NetGames '04, pages 152-156, New York, NY, USA,
2004. ACM Press.

S. Rieche, K. Wehrle, M. Fouquet, H. Niedermayer, T. Teifel, and
G. Carle. Clustering players for load balancing in virtual worlds. Int.
J. Adv. Media Commun., 2:351-363, December 2008.

N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. The effect
of latency on user performance in warcraft iii. In NETGAMES ’03:
Proceedings of the 2nd workshop on Network and system support for
games, pages 3—14, New York, NY, USA, 2003. ACM Press.

H. Singh and D. Gracanin. A methodology for managing distributed
virtual environment scalability. In Proceedings of the 2011 Winter
Simulation Conference, November 2011.

H. Singh, D. Gracanin, and K. Matkovic. An approach to quantifi-
cation and analysis of quality in distributed virtual environments. In
Telecommunications (ConTEL), Proceedings of the 2011 11th Inter-
national Conference on, pages 503-510, June 2011.

H. L. Singh. PPT: The portable performance
http://github.com/lally/libmet.

C. U. Smith and L. G. Williams. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison Wesley,
2002.

I. Software. Quake 3 arena. http://www.quake.com/.

B. Watson, N. Walker, W. Ribarsky, and V. Spaulding. Effects of
variations in system responsiveness on user performance in virtual en-
vironments. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 40(3):403-414, September 1998.

F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Har-
ris, and M. Valero. Atomic quake: using transactional memory in an
interactive multiplayer game server. In Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, PPoPP 09, pages 25-34, New York, NY, USA, 2009. ACM.

tool.

