
An Approach to Tuning Distributed Virtual Environment
Performance by Modifying Terrain

H. Lally Singh∗
Google and Virginia Tech

Blacksburg, VA, USA

Denis Gračanin†
Virginia Tech

Blacksburg, VA, USA

Krešimir Matković‡
VRVis Research Center

Vienna, Austria

ABSTRACT
Distributed Virtual Environments (DVEs) must continue to
perform well as users are added. However, DVE performance
can become sensitive to user behavior in many ways: their
actions, their positions, and even the direction that they
look. These behavioral elements are important for evalu-
ating virtual terrains. While two terrains may be similar
in terms of user experience, task efficiency, immersion, and
even aesthetics, they may exhibit substantially different per-
formance out of the DVE when many users are logged in.

We discuss an approach — Software Scalability Engineer-
ing (SSE) — that uses load simulation and iterative mod-
eling to locate causes of undesirable performance, experi-
ment with changes, and verify improvements to DVE sys-
tems. Presented here is a case study of using the approach to
substantially improve the CPU requirements of the Torque
engine. With a key factor determined, we evaluate several
modifications to the original terrain. Finally, a modification
is selected for its ability to stabilize the simulation time.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation (e.g.,
HCI)]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities; D.2.8 [Software Engineer-
ing]: Metrics—complexity measures, performance measures

General Terms
Design, Performance

1. INTRODUCTION
Distributed Virtual Environments (DVEs) systems them-

selves are performance-sensitive, but remain elusive to an-
alyze due to their complex interactions between software,

∗lally@vt.edu
†gracanin@vt.edu
‡Matkovic@VRVis.at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI ’12 May 21-25, 2012, Capri Island, Italy
Copyright 2012 ACM 978-1-4503-1287-5/12/05 ...$10.00.

geometric assets, and user behavior. However, DVE system
performance is an important metric. It indicates how long a
user waits between supplying input to the system and see-
ing the world update in response. Looking at the simplest
DVE configuration: client/server, we may break down the
server’s workload into input, simulation, and output phases,
where the I/O denotes communication with clients.

The resulting DVE performance characteristics can be
quite sensitive to changes in that state space. A cluster
of objects in one area can cause one part of a scene-graph’s
data structure to contain substantially more objects than
average, causing disproportionate simulation times for that
region. Changes to small numbers of otherwise insignificant
objects (e.g. foliage) can substantially alter the synchro-
nization load on the system if the inter-visibility of other
objects is altered. The changes in human behavior can be
very hard to predict, and result in substantial changes to
the resulting load applied to the system. The resulting level
of reality perceived by the users is sensitive to the perfor-
mance of the system. The longer the interval between the
user’s host sending an update and receiving a world-state
that contains the results of that update directly results in
visible reaction lag from the DVE. Modern software practice
provides tools that can help. We present such a methodol-
ogy designed for DVE systems, Software Scalability Engi-
neering (SSE), followed by an in-depth example of it being
used for substantial analysis, change, and positive impact
on the user-visible performance of a Torque [2] based DVE.
We will use SSE to determine the key performance factors in
Torque, and use that information to alter the virtual terrain
to enhance performance.

2. RELATED WORK
Performance has often been a key constraint in Distributed

Virtual Reality systems. Zhang et al. [6] describe a sys-
tem using a combination of simulation and measurement
to determine the values of performance metrics. Quax et
al. [3] provide an analysis of the effects of latency and jit-
ter on user performance, as measured by the in-game score
in Unreal Tournament 2003. Watson et al. [5] studied the
time-to-feedback from user actions and its effect on user per-
formance. We present a methodology derived from Software
Performance Engineering (SPE), an iterative, model-based
software engineering process. Smith and Williams describe
it in detail in [4]. Our own methodology, Software Scalabil-
ity Engineering (SSE) is a derivative of it. SPE is a general-
purpose process applicable to many systems, but does not
directly address the effects of complex human behavior or

static assets (e.g. 3D models) of the system being built.

3. THE SSE PROCESS
Our methodology is an strongly derived from Software

Performance Engineering [4], tuned for an instrumentation–
driven cycle with a focus on the construction of DVE sys-
tems. Denoted Software Scalability Engineering (SSE), it at-
tempts to assimilate the effects of human behavior and static
assets into the simulate–analyze–evaluate iteration. We de-
fine a DVE’s scalability as the relationship between the sys-
tem’s resources and the DVE’s effective capacity. This latter
value is the maximum number of users that (1) can fit into
the system and have it run without crashing and (2) con-
tinue to find the experience sufficient to meet their goals.
This latter clause requires that system behavior and perfor-
mance continue to be acceptable to users, as a DVE may
have to process user logins well beyond the point where it
can provide reasonable service.

When beginning the scalability engineering process, or the
engineering project as a whole, some initial preflight work
up-front is needed. The desired scalability, allowable effort,
and critical components of the software are identified. The
analysis phase is the head of SSE’s iteration loop. Initially,
it is entered after preflight, and re-entered after changes to
the virtual environment or substantial changes to the DVE
software. We gather human usage data to determine how
users commonly end up using the system. We then modify or
re-implement the client software to behave representatively
like the observations.

For modeling, we use an incremental analyze-and-simulate
method to scale the effort, and focus on the most quantita-
tively significant parts of the system. We place instrumen-
tation into the engine to validate and calibrate the mod-
els. Then we run the load simulator against the engine and
record data. We then look at the instrumentation data, to
determine if the model gives enough accuracy, if the engine
can provide the performance required, or if it is even objec-
tively feasible to build such a DVE with the performance
requirements. The model, engine, or virtual environment
assets are modified in the next iteration to make the models
show confidence in desirable performance in the system.

4. TORQUE PERFORMANCE ANALYSIS
The Torque engine comes with a sample level (“Original”),

a small village with a lake, three large towers, and a small
dock. Figure 1 shows the village and one of the towers. The
other levels are part of an experiment discussed later. The
only avatar available is a large Orc, with a single weapon, an
explosive crossbow. We iteratively build a model of the user
behavior at load based on the conducted user study, while it-
eratively building a model of the DVE. Modeling the general
behavior of human participants is clearly infeasible in the
general case, but it can be possible within the limited scope
of how the behavior affects load factors on the system. For
Torque, the users are all equals and fight each other. Group
dynamics, if present, seem to be lost in the normal variation
found during user study. As the game was very simple —
one weapon, small town, and only kills counted for points —
the number of tactics people used proved small. The players’
locations were recorded in 1 Hz intervals. This density map
(Figure 3 has 4 examples) will help estimate the amount of
work done during collision detection in simulation.

Modified

Modified-2

Original

Original-2

Figure 1: Torque Levels Evaluated

4.1 Load Simulation, Metrics, Geometry
An AI-driven synthetic player is created. It implements

the behaviors observed at the frequency they were observed.
They have enough logic to move, select targets, aim, chase,
and fire. A table of way–points and direct linear motion
towards them was used for navigation. To provide equiva-
lent load of some number N users, we run N copies of the
load simulator simultaneously. We run them on one or more
separate machines from the Torque server to prevent CPU
starvation on the server.

We run a quick load simulation to observe the system
running. The instrumentation that the operating system
provides — bandwidth counters and top(1) — provide suf-
ficient instrumentation for our needs. Even at high load,
Torque does not use a fraction of the memory or network
bandwidth available on the server — improvements in their
availability since Torque was developed have been substan-
tial. However, substantial CPU usage is shown.

In our current Torque setting, we only have one geometric
model for the player and one level. The effects of the player’s
model are indistinguishable from other components of the
performance. When the detailed behavior of that routine
is of more interest do the models’ attributes or distribution
come into interest. The data was taken from instrumenta-
tion of the user simulations only — projectiles, power-ups,
and buildings are not represented. The simulate frame from
the ppt instrumentation — discussed later — was the source
of this data. The relevance of this data source selection will
become clearer in the case study.

4.2 Data Collection
We developed the ppt tool for data collection. It uses

frames of data, each atomic, to assemble blocks of related
data together. A stream of frames is collected from the
program and converted to a text table for statistical analy-
sis. The first frame is coreloop, which represents a cycle of
the top-level loop in Torque. Individual event times can be
summed as contributions to the coreloop-spent time. The
coreloop frame also includes the number of logged-in users.

The simulate frame represents a full simulation of the
virtual world. It increments over all objects and simulates
them a discrete time step forward. it contains the bulk of

Collision Count

T
im

e
(m

s)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

A. Original

B. Modified

C. Original−2

D. Modified−2

0 1 2 3 4 5

Figure 2: Collision Detection Times vs Collision
Counts at N=30, with our Model Overlaid as a Line

our data and the focus of our analysis: (1) object: A unique
identifier Torque gives to every object instance in the virtual
world; (2) type: An integer representing the runtime type of
the object; (3) x,y,z: The current location of the object; (4)
start,end: The start and end times of the simulation work
done for that object in the current time step, in hrtime_t

format.
The server and load simulators were set up on Amazon

Elastic Compute Cloud (EC2) virtual machine instances.
One machine instance was dedicated to the server, and fif-
teen client simulators were on each of four other machine
instances. ppt data, after conversion, creates text files that
we analyze in GNU R.

4.3 Performance Analysis
Looking at the breakdown of processor time, the engine

spent 72% of all CPU time in simulation of the users, even at
low load (N = 1 through 12). The rest of time in simulation,
another 1.2%, was spent simulating arrows. The remaining
16.2% of CPU time was spent in synchronization with client
machines. Additional iterations of the analysis cycle gave
more detailed information.

The simulator works by simulating the entire virtual world
in small time–steps. Each object is moved forward along its
current trajectory, with forces applied, for the length of the
time step. Then, collisions are checked, and any responses
(such as health adjusted for hits, or position adjustment to
avoid going through walls) are processed.

For Torque, the time step is 32 ms, but the length of the
time–step may be increased if the software cannot simulate
the time step in 32 ms. Then, each object is moved further
before collisions are checked. As the time spent simulat-
ing an object is independent of its time–step duration, this
technique is effective in making the engine auto–balance its
simulation accuracy with latency.

The work for a simulating a single step is executed through
a call from ProcessList::advanceObjects(). This method
iterates through all objects in the virtual world and invokes a
processTick() method on each. As players are the primary
user of CPU time in the simulator, we will focus on the
relevant method: Player::processTick().
updateMove() and updatePos() were determined to have

nontrivial execution times at 250 µs and 1.6ms. These cor-
respond to the movement and collision-detection phases,
respectively. The others totaled to roughly 7.2 µs. The
method updateMove(), while nontrivial in execution time,
had a very low variance: 6.99e-4 ms2. The method up-

datePos(), however, had a variance of 20.45 ms2. Through
algorithm analysis of the code in the method, combined
with instrumentation, the collision count was found to be
the largest factor. The time spent in Player::updatePos()

is shown on the vertical axis in Figure 2. We have a simple
model for Player::updatePos(), a polynomial based on the
number of collisions (c):

tupdatePos = 0.05 + 0.165c1.3(milliseconds) (1)

Equation 1 is based on a simple curve-fit of the data, ini-
tially assuming that the function was in the family y− y0 =
AxB . The model leaves out many factors affecting the run-
time of updatePos: cache misses, context switches, and vari-
ation in search time through the scene–graph data structures
for candidates to collision–check. The time given is for a
specific computer, and will vary with other machines; how-
ever, the difference will be linear to this function, and the
exponent dominates.

The key metric we intend to construct is the distribution
of th erunning time of a player’s physical simulation, e.g. a
single call to Player::processTick(). The metric indicates
when the map is too expensive to simulate, due to too much
work required for collision processing. Equation 1 models
the time spent in collision detection, as shown in Figure 2.
The values of this factor (c) drive the amount of CPU time
that Torque needs to support a DVE. So, an experimental
hypothesis is formed: can the number of collisions be con-
trolled, to control the CPU requirement of the system? More
specifically, can we modify the virtual terrain to reduce the
number of collisions that need processing at any moment in
time?

5. LEVEL ALTERATIONS
Figures 1 and 3 show four variations of the DVE. We first

did the analysis on the “Original” level (A). There is one
particularly dense spot at approximately (x = 250, y = 200),
the dark square in Figure 3 (A). Players are often there
in number. We put a new building there to diffuse player
positions. That attempt is shown as the “Modified” version
(B). The building itself was a duplicate of one of the four
identical buildings already in the same area: a small ten–
by–ten meter single room with walls on four sides, windows,
and a door. We assume that collisions correlate with spatial
density.

To compare that change versus a random change in the
terrain, we make two more altered versions. First, we put
another building on the opposite side of the virtual village,
opposing the dense spot. This is denoted “Original-2” (C).
Next, we take our modified version and put another building
next to the one we added in (B). We denote it “Modified-2”
(D). A large tower is placed off to the side of the village,

x

y
−1000

0

1000

2000

A. Original

−1000 0 1000 2000

B. Modified

−1000 0 1000 2000

C. Original−2

−1000 0 1000 2000

D. Modified−2

−1000 0 1000 2000

Frequency

0 75 150 225 300 375 450 525 600 675

Figure 3: Original (A), Intentionally Modified (B), and Randomly-Modified (C,D) Level Densities

blocking a key snipe–point, a hill to the left of the pictured
area, from working. In Figure 1, it occludes an existing
tower (changes are shown with white ellipses).

Looking at Figure 3, we have quite a variation in user den-
sity. The darkest point in the original map is substantially
lighter in our“Modified” (B) version. It is still present in our
first random variant, “Original-2” (C). The combined inten-
tional and random variant, “Modified-2” (D) has a reduced,
but still substantial, dark spot there. Figure 3 shows data
acquired to show movements over the instrumented time in-
terval. Four simulations were run, each with 60 users. All
sub-plots show five-thousand randomly–selected invocations
of Player::processTick().

The level modification was simple: place another building
in the middle of the densest region — the middle of the
virtual village. The effect was better than expected. The
building density in the village increased enough that the
load simulators moved out to a nearby clearing – on the
right side of the area visible in Figure 1. A combination of
the provided cover and decreased available area in the region
pushed the simulated players out to other areas where they
could find other players to interact with.

The original (A) average time through the main loop was
10.66 ms and the modified (B) level 10.36 ms — a three-
percent improvement. More importantly, the variance in
simulation time — the difference between players being in
the least and most densely-populated regions — was reduced
from 43.42ms2 to 20.65ms2. The occasional peak in simula-
tion time indicated by the high variance caused dissonance
between the client and server-side simulation. It manifests in
objects “jumping” from the position simulated by the client
to that received from the server. The other two levels had a
worse mean runtime, 10.91 ms for“Modified-2”and 10.99 ms
for“Original-2”. The variances were 86.05ms2 and 87.32ms2,
respectively.

6. SUMMARY AND FUTURE WORK
Through roughly a half-dozen iterations through the cy-

cle, we have identified the system bottleneck, modeled how it
was being used, identified its largest factor, and completed
a successful experiment in relieving pressure on that bot-
tleneck. A simple, general method for relieving bottleneck
pressure was found in the process. While Software Scala-
bility Engineering (SSE) can and has been used for alter-
ing system software, it can just as easily be used to deter-

mine which parts of the user interface can be adjusted for
better performance. In the case od DVEs, SSE’s user be-
havior modeling and simulation facilities have demonstrated
promise in being able to guide enhancements to the exposed
virtual reality.

Determining the largest factor in system performance —
simultaneous collisions detected for a single player for a sin-
gle time step — enabled us to understand the terrain’s af-
fect on performance. Specifically, we looked at density maps
(spatial histograms) of player positions and used the peaks
as areas of concern in terrain design. We hypothesized that
reducing the peak density in a terrain can have substantive,
measurable effects on system performance. In the future,
applications of SSE to even more parts of the DVE system
stack — synchronization, quality of experience management
— are planned.

7. REFERENCES
[1] T. de Senna Carneiro and J. Cotrim Arabe. Load

balancing for distributed virtual reality systems. In
Proc. of Int. Symp. on Computer Graphics, Image
Processing, and Vision, pages 158 –165, Oct. 1998.

[2] GarageGames. Torque game engine.
http://www.garagegames.com/products/browse/tge/.

[3] P. Quax, P. Monsieurs, W. Lamotte, D. D.
Vleeschauwer, and N. Degrande. Objective and
subjective evaluation of the influence of small amounts
of delay and jitter on a recent first person shooter
game. In Proc. of ACM SIGCOMM 2004 workshops on
NetGames ’04, pages 152–156, New York, 2004. ACM.

[4] C. U. Smith and L. G. Williams. Performance
Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison Wesley, 2002.

[5] B. Watson, N. Walker, W. Ribarsky, and
V. Spaulding. Effects of variations in system
responsiveness on user performance in virtual
environments. Human Factors: The Journal of the
Human Factors and Ergonomics Society,
40(3):403–414, Sep. 1998.

[6] M. Zhang, H. Xie, and A. Boukerche. A design aid
and real-time measurement framework for virtual
collaborative simulation environment. In Proc. of
IEEE Int. Symp. on Parallel Distributed Processing,
Workshops and PhD Forum, pages 1–6, Apr. 2010.

