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ABSTRACT
Time-series data are regularly collected and analyzed in a
wide range of domains. Multiple simulation runs or multiple
measurements of the same physical quantity result in ensem-
bles of curves which we call families of curves. The analysis
of time-series data is extensively studied in mathematics,
statistics, and visualization; but less research is focused on
the analysis of families of curves. Interactive visual analysis
in combination with a complex data model, which supports
families of curves in addition to scalar parameters, repre-
sents a premium methodology for such an analysis. In this
paper we describe the three levels of complexity of interac-
tive visual analysis we identified during several case studies.
The first two levels represent the current state of the art.
The newly introduced third level makes extracting deeply
hidden implicit information from complex data sets possi-
ble by adding data derivation and advanced interaction. We
seamlessly integrate data derivation and advanced interac-
tion into the visual exploration to facilitate an in-depth in-
teractive visual analysis of families of curves. We illustrate
the proposed approach with typical analysis patterns iden-
tified in two case studies from automotive industry.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques; I.6.6 [Simulation and Modeling]:
Simulation Output Analysis

General Terms
Design

Keywords
Interactive visual analysis, knowledge generations, families
of curves, attribute derivation.

1. INTRODUCTION
Generating useful knowledge from the information that is of-
ten only implicitly available in complex data sets is one of the
key challenges in analysis. Interactive visual analysis (IVA)
has proven itself as a valuable method of getting insight into,
understanding, and analyzing complex data. However, IVA
is still not well integrated into the whole analysis work flow.
There is a multitude of powerful methods presented, but,
unfortunately, they often remain isolated.

Our work is motivated by case studies we have done with do-
main experts from different fields including engineering [13,
14, 16] and medicine [15]. We discovered that many details
of the data sets from those very different problem domains
can be represented as families of curves [14]. We could
also identify similar procedures in the analysis of families
of curves. We suggest that representing curves as an atomic
type opens new analysis possibilities. We focus on a set of
tools for the analysis of data that contains families of curves.

The analysis of curves is a well known and extensively re-
searched topic in science and mathematics. However, there
is not much research on the analysis of entire families of
curves. IVA offers an effective and efficient opportunity to
analyze even larger families of curves [14]. The state of
the art follows the visual information seeking mantra [21]:
overview first, zoom and filter, then details-on-demand. This
approach has often been proven powerful, but especially
when working with families of curves, there are cases when
zooming and filtering is not sufficient. Our work is in part
motivated by curve sketching, a familiar topic from high
school. We seek to extend the data set by computing new at-
tributes and additional derived curves when analyzing fam-
ilies of curves; just as we compute attributes (e.g. extrema)
and curves (e.g. first derivative) in curve sketching. Curve
sketching helps us in the analysis of single curves. In this
paper, we apply related methods to entire families of curves.

Traditional visualization systems limit data manipulation
to filtering and require more complex processing to be per-
formed in a separate step before the visual analysis. When
that pre-processing is designed, one needs to estimate what
properties of the data are expected to be of interest. Such
a priori knowledge is often not available, in particular not
in more intricate analysis cases. In this paper we present



a set of tools which extends the conventional approach and
facilitates on demand data generation. By allowing the syn-
thetic extension of data by attribute derivation (in addition
to filtering, of course) at any time, new analysis possibilities
arise that are useful in particular for experts. An integrated
system makes it possible to reveal deeply hidden information
in the data without requiring detours or a priori knowledge
to design the pre-processing.

The main contribution of this paper is not a new visualiza-
tion method or a new view. It is a set of analysis procedures,
cleverly combined in one toolbox, which facilitates the deep
and flexible analysis of complex data containing families of
curves. We argue that a rich set of tightly integrated (gen-
eral) analysis mechanisms can help in a wide range of ap-
plication scenarios. We classify the analysis process itself
and suggest what should be included in an advanced IVA
framework. We have identified three levels of complexity in
the analysis process. The first two levels represent the cur-
rent state of the art. We propose a third level that includes
advanced interaction and on-demand aatribute derivation in
order to facilitate the exploration of deeply hidden details.
We claim that there are two distinct ways to explore hidden
features. One is to keep data intact and offer more complex
interaction. The other possibility is to extend the data to be
more complex and keep interaction simple. We demonstrate
that the two approaches are complementary; there is no uni-
versally preferable way. We use examples from several case
studies with domain experts from various fields to illustrate
the possible use of the proposed techniques.

2. RELATED WORK
In this section we summarize work related to ours, includ-
ing the integration of computational methods into IVA, the
visualization of multivariate time-dependent data, and co-
ordinated multiple views.

Interactive visual analysis is powerful, but cannot capture
certain aspects of complex data sets in its standard form.
Visual analytics research [12, 22] suggests that computa-
tional data analysis methodologies, such as statistics, data
mining, or machine learning should be integrated with IVA
to create a knowledge discovery framework. The survey by
Bertini and Lalanne [5] exemplifies that computational and
visual methodologies are complementary. It is promising
to aim for solutions where interactive, visual approaches are
tightly integrated with automated, computational ones, such
that an efficient iterative approach to data analysis becomes
possible. Such mixed-initiative knowledge discovery systems
take the best of human and machine capabilities [5].

Reviewing the large body of literature on the visualization
of time-dependent data is beyond the scope of this paper.
Readers are directed to the recent book by Aigner et al. [1].
Visualization of multivariate data has also been researched
for decades. In this paragraph we focus on methods that vi-
sualize a special type of multivariate time-dependent data,
namely families of curves. Families of curves are commonly
depicted in line charts [14] or dense pixel displays [18]. Spatio-
temporal data often includes families of curves. In the book
by Andrienko [2], visualization methods for spatio-temporal
data and common analysis tasks, includeing computing dif-
ferences and performing advanced quieries, are discussed.

Figure 1: Two approaches to the management of
curve data. (a) Time is represented by adding an
additional dimension. Records 1 to 500 represent
one curve. (b) Curve is represented as an atomic
type in the data. Columns of this table are families
of curves.

Visual methods that support the exploration of complex sys-
tems are actively researched. The Influence Explorer [23] is
one of the early examples. Here we focus on systems that
make an effort to support the analysis of information that
is not explicitly represented in the data set. The interac-
tive derivation of new data attributes has been identified
as one of the key aspects of visual analysis [8], because it
leads to a useful feedback loop in the analysis process [12].
Still, it has not been widely implemented in existing sys-
tems. Cross-filtered views [24] support the derivation of new
data attributes. Kehrer et al. [11] incorporated the compu-
tation of statistical aggregates into the analysis. Doleisch [6]
proposed attribute derivation to allow interactive feature
specification. Berger et al. [4] presented a system to enable
the continuous analysis of a sampled parameter space using
methods from statistical learning to predict results that are
not available. However, similar approaches have not been
incorporated into the analysis of families of curves yet.

Coordinated multiple views (CMV) combine different views
on the same data in such a way that a user can correlate the
different views. Subsets of data can be interactively selected
and the selected subset is highlighted in all other views in
a consistent manner. This enables users to effectively ex-
plore and analyze high dimensional data. The survey by
Roberts [20] provides an overview on the state of the art in
coordinated multiple views.

3. DATA MODEL AND EXAMPLE
Data in databases and also in IVA applications are generally
stored as records that consist of attributes. This concept
is well known, records can be considered as points in an
n dimensional space where n is the number of attributes.
All attributes (dimensions) are scalars, either numeric or
categorical. We omit a more detailed discussion including
nominal and ordinal types here. Time-dependent data can
be represented by adding time as an additional dimension.

Based on our previous work [14], we describe an enhanced
data model that natively supports time dependent dimen-
sions. We use an example from climate research [3] to illus-
trate the data model. Climate researchers develop models
that can predict future climate development. The models
are often tested and validated against known past scenarios.



Figure 2: Interactive visual analysis on three levels of complexity. The first level is linking and brushing with
one brush. On the second level, more views are used and brushes are combined with logical operators. On a
third level, advanced interaction (brushing) and attribute derivation are added.

In our example, the simulated climate response to the out-
burst of meltwater from Lake Agassiz was studied [3]. The
diffusivity parameters of the ocean model (two scalars, diff H

and diff V) were varied across simulation runs. There were
10 variations of each parameter, producing 100 individual
simulation runs. In each simulation run, time series data is
generated, including surface air temperature over land and
oceans, global precipitation, etc. Each simulation run spans
500 years, represented as 500 time steps in each series.

Figure 1(a) illustrates a conventional way of storing such
data. Time is an additional column in the table. For each
simulation run, i.e. for each combination of diff H and diff V,
500 records represent time steps of the series. The scalar di-
mensions of the records need to be duplicated for each time
step. If, however, we allow some columns to contain curves,
we get a different model, shown in Figure 1(b). We have now
one record that contains the time series Tropicaltemperature(t)
as a curve, as opposed to having 500 records with Timestep
and Tropicaltemperature attributes. Duplication of scalar
dimensions is not necessary. We have substantially reduced
the number of data records and, simultaneously, increased
the complexity of the data model. We did not loose any of
the data; to the contrary, we have gained additional informa-
tion. Now values from a single simulation run are grouped
into a single record. All curves populating one column in
Figure 1(b) constitute a family of curves.

Formally speaking, this data can be represented by a data
model consisting of m independent variables (the simulation
parameters) and n dependent variables (simulation results).
The independent variables have scalar values and can be
expressed as x = [x1, . . . , xm] ∈ I. Here I denotes the set of
all possible combinations of values of independent variables,
representing all simulation runs. Dependent variables are
functions of the independent variables. When a value of a
dependent variable k is a curve (data series over t) fk(x, t), it
contains o data elements, one for each value of t ∈ t1, . . . , to.
A family of curves is then a set of curves for each possible
value of x, fk(xi, t)|∀xi ∈ I.

If dimensions can be not only scalars, but also curves, then
we can improve the analysis significantly. This data model
has proven itself in several case studies we have done in
different fields, for example traffic surveillance [14], opti-
mization of Diesel fuel injection [14], timing chain drive de-
sign [13], and medical data [15].

4. THREE LEVELS OF COMPLEXITY IN
INTERACTIVE VISUAL ANALYSIS

Interactive visual analysis is an iterative process. It usually
starts with a simple analysis of the original data to gain
overview. Then, for a more advanced analysis, the analyst
needs to use more complex procedures and can combine find-
ings from earlier stages of the analysis. The need for a more
advanced analysis arises as information should be extracted
which is more difficult to access. At a certain point it be-
comes difficult or even impossible to find features of interest
by analyzing the original data only using conventional IVA
methods. More advanced and complex interaction possibil-
ities are required. Alternatively, or perhaps in addition to
that, the data can enhanced by computing aggregates or first
derivatives of time series, for instance. Figure 2 illustrates
our view on the three levels of complexity in interactive vi-
sual analysis. We exemplify those three levels using the
climate simulation data set introduced in Section 3.

In a coordinated multiple views system, the first level (small-
est circle, left in Figure 2) can be interpreted as simple link-
ing and brushing with one brush. Simple brushing includes
selecting a rectangular region in scatter plots, a range of an
axis in parallel coordinates or using a line brush [14] in the
curve view. The user interactively selects some items in one
view, and the selected data subsets are highlighted consis-
tently in all views. Then a different set of items (another
feature of interest) is brushed and the highlighted patterns in
the linked views are studied. The user repeats this process,
engaging in an iterative IVA loop. This is sufficient in many
cases, e.g. when identifying diffusivity parameters that lead
to high temperatures (Figure 3), but we cannot formulate
more complex queries. We cannot identify the droughtiest
cases, for instance, because we would need to simultaneously
brush high temperature and low precipitation.

On the second level (larger circle in the middle of Figure 2)
more views are used and brushes can be combined with logi-
cal operators. This makes answering such questions possible,
and it is at large the current state of the art [17]. Several
brushes can be defined in the same or in different views.
Brushes can be combined using logical operations (AND,
OR, NOT). The data selected by the composition of the
brushes are highlighted in all views. Brushes can be com-
posited via a feature definition language [6], or in an iterative
manner [14]. This enables drill down (AND and NOT) or



Figure 3: An example of a level one analysis with
linking and brushing. High temperatures at a later
point in time are selected with a line brush. The
corresponding model parameters are highlighted in
the scatter plot.

Figure 4: An example of a level two analysis. A com-
position of two brushes highlights the droughtiest
cases. High temperatures (top left) and low precipi-
tation levels (bottom left) at the same point in time
are brushed. The scatter plot displays model pa-
rameters diff H and diff V. Greenland temperature
is shown in the bottom right. However, level two
analysis is not powerful enough to select the jagged
lines marked by the green ellipse.

broadening (OR) of the selection. The droughtiest cases can
be found easily with composite brushing (Figure 4). This is
still not sufficient for more detailed analysis of complex data.
There are many more analysis goals that cannot be achieved
by the use of those methods, for example, identifying cases
which have rising temperature at some point in time, or
finding temperature curves of some specific shape.

We can see some jagged curves marked with the green ellipse
in Figure 4. There are also some faintly visible jagged curves
in the precipitation plot. Is there any correlation between
them? Do they belong to the same simulation runs? How
do we select them? One possibility is to compute the first
derivatives of curves. Extreme (either positive or negative)
values of the first derivatives can be brushed to select jagged
curves. The procedure is illustrated in Figure 5. It must
be mentioned that the first derivative of discretely sampled
data is approximated by finite differences, and the data often
needs to be smoothed before differentiation to compensate
for frequency amplification due to derivation.

We observed that there is a certain duality in complex anal-
ysis tasks. One option is to use complex interaction methods
and visualizations, and retain data in its original form. Com-

Figure 5: An example of a level three analysis. The
plots show temperature and precipitation (top) and
their first derivatives (bottom). Two line brushes
select extreme temperature derivates near the end of
the simulation run. The jagged temperature curves
become visible, including two that were hidden in
Figure 4. The highlighted precipitation curves are
similarly jagged, indicating correlation.

plex interactions include, for instance, the angular brush in
parallel coordinates [9] and the angular line brush in the
curve view [16]. Conversely, new data can be synthesized
during the analysis. This derived data can often be analyzed
with simpler interaction techniques. Both approaches have
advantages and disadvantages; none is universally prefer-
able. There is usually a learning curve associated with com-
plex visualization and interaction techniques before analysts
can use them effectively [12]. On the other hand, the mean-
ing of derived data is not always intuitive. Depending on
the task and the analyst’s experience and background one
or the other method is preferred. The interactive visual
analysis framework needs to provide support for both.

The combination of complex interaction and on-demand data
computation constitutes the third level of visual analysis
(rightmost circle in Figure 2). In order to compute data
for the next iteration of the analysis, the analyst should not
need to interrupt the analysis session and use some differ-
ent tool to perform computations. Such detours can signif-
icantly hinder the analysis. Quite the contrary, the compu-
tation must be tightly integrated into the IVA framework.
Therefore, while the data in levels one and two remains
static throughout the analysis session, it becomes dynamic
in level three. Data changes as a result of the on-demand
computations—for each computation, a new dimension (a
column in the table in Figure 1(b)) is added to the data.

Note that each of the three circles in Figure 2 encloses the
previous ones from the lower level(s), indicating that a seam-
less switch between circles (levels of analysis) is possible.

5. ANALYSIS OF FAMILIES OF CURVES
In this section we illustrate the above described principles in
the context of simulations in automotive industry. Current
emission regulations and efficiency requirements for modern
car engines lead to very complex designs. Engineers have
to deal with many, often contradicting, parameter settings.
The use of simulation is unavoidable in modern engine de-



sign. Advances in simulation and computation technology
have made multiple simulation runs possible. The idea is to
run simulations for the same simulation model with differ-
ent sets of control parameters. Interactive visual analysis is
a perfect method to analyze and explore the resulting data
sets. We have analyzed two important systems (Diesel fuel
unit injector and variable valve actuation) by means of in-
teractive visual analysis. A complete description of the two
case studies is out of scope of this paper. Interested read-
ers can find additional information in the referenced litera-
ture [7, 19]. We rather selected four of the most interesting
analysis patterns detected. These patterns are applicable to
virtually all domains where families of curves are analyzed.

Variable valve actuation (VVA) [19] is an active research
field in automotive industry. The operation of four-stroke
internal combustion engines consists of intake, compression,
power, and exhaust strokes. During the intake stroke, the
inlet valve opens and vaporized fuel mixture enters the com-
bustion chamber. During the exhaust stroke, the exhaust
valve opens and the exhaust gases leave. Conventional sys-
tems use a camshaft, where cams open and close the valves at
times dependent on the mechanical construction of the cams.
Different operating conditions (e.g. load or engine speed) re-
quire different valve opening and closing timings to achieve
optimal efficiency and emission. In engines equipped with
a VVA mechanism, the valves’ opening and closing times,
as well as the valve lift can be controlled based on the load
and engine speed. We explore the design of a hydraulically
supported cam operated VVA system. Such a system has a
camshaft with cams, and an additional hydraulic mechanism
which opens the valve independently of the cams’ position.
Approximately 600 simulation runs were computed with dif-
ferent parameters and the ensemble data was analyzed.

Besides valve actuation, the fuel injection subsystem [7] is
another engine component that has crucial impact on emis-
sions and performances. Currently, the two most important
types of injection systems for Diesel engines are the com-
mon rail and the unit injector systems. Common rail sys-
tems keep fuel pressurized to the injection pressure in a fuel
rail which feeds the cylinders. The rail is common to all
cylinders. In contrast, unit injector systems have the high
pressure fuel pump integrated with the injector. There is one
injector/pump unit per cylinder in the cylinder head assem-
bly. We analyzed [16] the Delphi E3 Diesel Electronic Unit
Injector (EUI) [7], an advanced unit injector with two inde-
pendent, fast-response precision actuators that can change
the injection pressure level and adjust the fuel delivery tim-
ing and duration, allowing a very flexible choice of fuel in-
jection characteristics. 2880 different simulation runs were
computed and analyzed in the case study [16].

5.1 Aggregates and Thresholds
Some of the typical goals in the analysis of families of curves
can be effectively tackled by computing some aggregate of
each curve in the family. The most important aggregates
from the IVA perspective are minimum, maximum, arith-
metic mean, percentile (which also includes median), and
integral. These aggregates are easily computed, yet they
convey useful information. Aggregates are scalars that rep-
resent an entire curve, significantly reducing data complex-
ity. Thereby, standard visual analysis tools that are avail-

Figure 6: Items with the smallest maximum pres-
sure are brushed in the histogram.

able for scalar data can be used in the exploration of families
of curves. This possibly requires less complex displays and
simpler interaction, too.

The most often used aggregates in engineering are certainly
minimum and maximum. It is interesting that analysts are
often interested in curves with the smallest maximum or the
largest minimum values. Such constraints describe curves
that do not go over or fall below specific thresholds. The
thresholds may represent desirable cases or outliers that
need to be avoided. In Figure 6, the maximum values of the
pressure in the valve actuator were computed. The reduced
data complexity allows selecting curves with the smallest
maximum in the histogram—a view much simpler than the
ones normally used for families of curves.

5.2 Exploring Slopes
In many fields, a typical task when analyzing families of
curves is finding curves that rise or fall at a certain point in
time. This is not easily possible with only level one and two
IVA. It would require stopping the analysis, precomputing
first derivatives, loading data again and then using another
curve view to brush positive or negative first derivatives at
the time point. Level three, on demand attribute deriva-
tion or advanced interaction, makes this kind of query much
easier and faster, without interrupting the IVA process.

During the analysis of the Delphi E3 EUI we want to achieve
the high power mode of operation. The injection rate curve
has to rise and decrease very steep. In addition, the injection
pressure must be as high as possible in order to inject the
sufficient amount of fuel.

Before analyzing the control parameters causing the desired
slope, we want to make sure there is no second needle open-
ing, an undesirable phenomenon that happens sometimes.
The needle is opened once more at the end of the cycle,
leading to an unwanted, uncontrolled subsequent injection,
resulting in the rapid deterioration of the quality of the com-
bustion. In the data this phenomenon appears as short rising
sections in the injected fuel rate curves. There are more than
2800 overlapping curves in the curve view in Figure 7(a), and
we cannot see if there are any with rising sections near the
end. We can use the first derivative of the injected fuel rate
curves to examine such cases. The user simply “orders” the
first derivative of the family of curves and a new dimension
is created in the data set. A new curve view is opened in
the CMV to show the first derivatives (Figure 7(b)). Posi-
tive first derivatives are seen at the beginning of the injection
cycle—rising curves, as expected. At the end of the injection
cycle we can see curves with negative values (falling curves,



Figure 7: (a) Over 2800 overlapping curves depict-
ing injected fuel rate. There are some curves ris-
ing near the end (green rectangle), but they cannot
be identified because of occlusion. (b) The user re-
quested the computation of first derivatives. The
slopes of interest can be brushed easily in the plot
of the first derivatives. (c) A zoomed view of the
selected curves with rising parts.

Figure 8: The angular line brush (zoomed on the
right) selects curves that intersect it at a given
threshold of angles. Steep rising curves are selected.

as expected), and also positive ones. Positive derivatives
here are unwanted; those are curves we wanted to identify.
We can easily brush them now using a simple line brush.

We can also select curves having a certain slope by enhanc-
ing the interaction. The angular line brush [16] is proposed
as a method for the intuitive brushing of curves based on the
angle. As the curve view already has its own type of brush,
the line brush, which is proven and well accepted, it seemed
as a best solution to improve it to be able to brush curves
with a specific slope interval. In parallel coordinates, angu-
lar brushing [9] has been proposed as a method to brush lines
that have particular slopes. In our case, the user can sim-
ply define a range of angles on the line brush. Only curves
that cross the line at an angle within that range are selected.
Figure 8 illustrates a case from the EUI analysis where steep
rising curves are brushed. Although we can allow the angle
constraint for arbitrary oriented line brushes, it proved to
be most intuitive in combination with either horizontal or
vertical ones. For arbitrary oriented line brushes, the user
would need to mentally combine the angle constraint with
the slope of the line brush in order to brush particular slopes.
The angular line brush is used in the original curve view, so
it saves valuable screen space. The alternative approach,
computing the first derivate and using a simple line brush
requires an additional curve view.

Once the first derivative is computed it can be used as input
to aggregation. When looking for curves which do not rise or
fall significantly, the first derivative can be computed first,
and then its minimum and maximum scalar aggregates. The
scalar aggregates are depicted in a scatter plot and curves

Figure 9: Finding temperature curves that remain
“flat”, i.e. do not have steep rising or falling sections.
Low maximum and high minimum values of the first
derivative are brushed in the scatter plot to select
those curves.

having high minimum and low maximum of the first deriva-
tive can be brushed now. These are flat curves. Figure 9
illustrates such a case.

Brushing slopes is a premium example of the two identi-
fied approaches for improving IVA. We described both ap-
proaches, i.e., attribute derivation and using standard inter-
action methods; versus introducing new interaction methods
that work with the original data. They are equally intuitive
and both have their advantages, depending on the task.

5.3 Exploring Shapes
In many cases, engineers are looking for curves of certain
shapes. Sometimes a combination of several line brushes is
sufficient to isolate curves of desired shape [14], but most
often a more advanced approach is needed. This problem,
too, can be solved by using more advanced interaction, or
by computing several specific aggregates and using simple
brushes. The well known similarity brush [10, 17] represents
the solution using advanced interaction. We propose two
ways to perform similarity brushing: the user sketches the
shape and then all similar curves are selected; or the user
picks one of the curves and all curves similar to that one
are selected. Various smoothing methods are available to
alleviate the detrimental effect of noise on the performance
of the shape recognition algorithm. The tolerance used in
curve comparison can also be specified.

An example from the analysis of variable valve actuation
simulation is shown in Figure 10. We are interested in a spe-
cific shape of the curves: quick rise, a certain span of time
while the valve is opened, then quick fall to a given range,
and finally smooth closing. In Figure 10(a), the shape is
defined using a similarity brush composed of four segments.
The similarity thresholds can be specified per segment. This
facilitates very precise control over shape. As an alterna-
tive, we can compute four scalar aggregates, r1t, r2t, br, pw,
shown in Figure 10(b). The aggregates are visualized in a
parallel coordinates view in Figure 10(c) and we can brush
desired values for all aggregates. A similar set of curves is
selected again (Figure 10(d)). We needed specific aggregates
in this case, and an additional view to define the shape via
aggregates.

Less complex shapes are often easier brushed by several
angular line brushes, or by using line brushes on the first
derivative. Using the first derivate for brushing shapes re-
quires an additional view. Curvature, the amount by which
a line deviates from being straight, is also proposed as a



Figure 10: (a) A specific shape of curves is brushed
by a similarity brush that consists of four segments.
(b) A set of scalar aggregates—timings of charac-
teristic points—that describe shape. (c) Brushing
curve shape by selecting ranges of the scalar aggre-
gates in the parallel coordinates. (d) A similar set
of curves is highlighted as by the similarity brush.

means of finding curves of certain shapes, although it is use-
ful in only some special cases.

5.4 Cross-Family Correlations
Up to now we have depicted each family of curves in separate
views. We have used the CMV system to compare multiple
families, and that is not always sufficient. We use an exam-
ple from the VVA simulation. The hydraulic model of the
VVA must be developed based on the energy conservation
of the complete system (hydraulic power unit composed of
engine and hydraulic pump, the accumulator, and the valve
system composed of the valve actuator and the valve itself).
The complete hydraulic valve actuator model is simulated.
From among the approximately 600 simulation runs, we are
looking for the runs where energy consumption is low.

The data contains three families of curves: valve lift, ac-
tuator volume and actuator pressure. We can depict them
using three curve views. First we select the desired valve lift
shape. We can see the corresponding shapes of the actua-
tor pressure and volume curves. The energy consumption
depends on both actuator pressure and volume.

We propose the usage of phase diagrams—a plot often used
in physics—to visualize two families of curves with a com-
mon time variable in a single view. The horizontal and ver-
tical axes of the phase diagram represent the two families of
curves. Points are plotted by using the corresponding val-
ues of curves in the two families as horizontal and vertical
coordinates. A point is plotted for each time step. Succes-
sive points are connected by line segments. The result is
one line showing values of the two curves. The process is
repeated for all other pairs of curves from the two families.
This plot often reveals interesting relations between differ-
ent dimensions of the data set that would be more difficult
to discern using only curve views. The phase diagram is
also fully interactive. Like the curve view, it supports angu-
lar line brush and similarity brush which makes finding and
brushing hidden relations simple.

Figure 11: (a) The desired valve lift curves are se-
lected by a combination of three line brushes. (b)
The phase diagram simultaneously displays pressure
and volume. A simple line brush excludes high en-
ergy consumption cases. (c) and (d): Corresponding
pressure and volume curves.

In Figure 11, pressure and volume are depicted in the phase
diagram. The area outlined by each closed curve in the phase
diagram corresponds to the energy used in one simulation
run. Once the curves with desired lift shapes are selected,
we can refine the selection in the phase diagram by excluding
cases with large energy consumption.

6. CONCLUSION
Data sets from many different problem domains contain fam-
ilies of curves, and interactive visual analysis represents a
premium methodology for their analysis. We described three
levels of complexity in IVA. The first level is represented by
linking and brushing with one brush. On the second level,
more views are used and brushes can be combined with log-
ical operators. The third level calls for the seamless integra-
tion of attribute derivation and advanced interaction.

An advantage of using advanced interaction is that it does
not increase the amount of data and the visual complex-
ity, because usually no additional views are necessary. On
the other hand, it generates an additional cognitive load, be-
cause the user needs to mentally manage the advanced inter-
action method. New types of analysis tasks may require new,
specialized interaction techniques. Designing specialized ad-
vanced interaction mechanisms requires a priori knowledge
of the expected analysis tasks, which is often not available.

In contrast, attribute derivation increases the amount of
data by generating additional synthetic data attributes. The
visual complexity is usually increased, because typically new
views are necessary to display the derived data. The mean-
ing of the derived attributes may or may not be obvious to
the analyst, depending on his or her background. On the
other hand, well known, simple mechanisms can be used to
interact with the data. Due to the step-by-step approach,
with a sufficiently rich set of basis operations, a lot of very
different derivations are possible, also ones that were not
necessarily anticipated at the time when the IVA system is
designed. This opens possibilities to solve unforeseen anal-
ysis tasks, too. The series of visualizations generated when



using attribute derivation can be used to discuss findings and
communicate the analysis procedure. On the other hand,
when advanced interaction patterns are employed, the anal-
ysis process is not intuitively captured in the visualizations
but it needs to be documented in some other manner.

The advantages and drawbacks of the two essential building
blocks, advanced interaction and attribute derivation, are
complementary. There is no universally better choice. In
open and flexible IVA systems that can be used for a variety
of problems, attribute derivation may be preferred. How-
ever, in more targeted IVA solutions, where similar prob-
lems need to be solved repeatedly, advanced interaction can
be more time-efficient for the experienced user.
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