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SUMMARY

We propose a new two-dimensional numerical scheme to solve the Saint-Venant system of shallow water

equations in the presence of partially flooded cells. Our method is well-balanced, positivity preserving, and

handles dry states. The latter is ensured by using the draining time step technique in the time integration

process, which guarantees non-negative water depths. Unlike previous schemes, our technique does not

generate high velocities at the dry/wet boundaries, which are responsible for small time step sizes and slow

simulation runs. We prove that the new scheme preserves “lake at rest” steady states and guarantees the

positivity of the computed fluid depth in the partially flooded cells. We test the new scheme, along with

another recent scheme from the literature, against the analytical solution for a parabolic basin and show the

improved simulation performance of the new scheme for two real-world scenarios. Copyright c© 2014 John

Wiley & Sons, Ltd.

Received . . .
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1. INTRODUCTION

The shallow water equations are of great importance in many application areas, such as flood [9],

or tsunami simulations [1] in urban and rural areas, in which waves propagate with a horizontal

length scale much greater than the vertical length scale (“shallow waves”). Floods may produce

enormous economic damage and human casualties, which have been recently reported to increase

due to a number of reasons [17, 22]. In order to minimize the adverse effects of floods, flood

mitigation measures are needed, such as adjusting regional planning, constructing levees and

polders, establishing evacuation plans, and issuing timely flood warnings once the flood is imminent.

All of these tasks rely on accurate and fast simulations of the flood wave propagation based on the
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2 ZS. HORVÁTH ET AL.

shallow water equations. In this paper, we are mainly interested in large-scale flood simulations, for

which the main challenge is the simulation time (see Figure. 1).

In recent times, flood events have been reported to occur more frequently [22]. Moreover, their

relation to climate change has been seen to embody emerging spatio-temporal features stemming

from nonlinear landscape-climate dynamics [38]. These floods can contaminate the soil and our

water sources, not to mention the human casualties and the financial costs of the caused damages.

For this reason, we have to be well prepared and be able to act in time to minimize damages and

losses. The shallow water equations serve as a fundamental and efficient tool for simulating floods

and creating protection plans for such catastrophic events. Waser et al. [49] present an integrated

solution based on the shallow water equations and on multidimensional, time-dependent ensemble

simulations of incident scenarios and protective measures. They provide scalable interfaces which

facilitate and accelerate setting up multiple time-varying parameters for generating a pool of pre-

cooked scenarios.

Shallow water waves are described by the Saint-Venant system [21, 27], in which the motion of

the fluid is introduced by the gravity. The equations are derived from depth-integrating the Navier-

Stokes equations [13, 46]. This leads to a vertically lumped description of the wave propagation,

which assumes invariance in fluid properties with depth. If the fluid is stratified, i.e. features vertical

layers with different properties (e.g. temperature, density), a system of multiple level shallow water

equations (e.g. [15, 30]) can be used, with as many levels as there are the layers in the stratified

fluid. In this paper, we focus on single-layer shallow waves. Note that the framework can be applied

to multiple-level systems.

We are interested in a robust and fast numerical method for the Saint-Venant system of the shallow

water equations (SWE). We begin with a brief overview, and discuss the most important details,

which are essential to completely understand the system and the proposed numerical scheme.

The two-dimensional shallow water waves can be described by the following Saint-Venant system

[12]: ⎡
⎢⎢⎣
h

hu

hv

⎤
⎥⎥⎦
t︸ ︷︷ ︸

conserved variables

+

⎡
⎢⎢⎣

hu

hu2 + 1
2gh

2

huv

⎤
⎥⎥⎦
x

+

⎡
⎢⎢⎣

hv

huv

hv2 + 1
2gh

2

⎤
⎥⎥⎦
y︸ ︷︷ ︸

flux functions

=

⎡
⎢⎢⎣

0

−ghBx

−ghBy

⎤
⎥⎥⎦

︸ ︷︷ ︸
source terms

, (1)

where h represents the water height, hu is the discharge along the x-axis, hv is the discharge along

the y-axis, u and v are the average flow velocities, g is the gravitational constant, and B is the

bathymetry (see Figure 4a). Subscripts represent partial derivatives, i.e., Ut stands for ∂U
∂t . In vector

form the system can be written down as:

Ut + F(U, B)x +G(U, B)y = S(U, B), (2)

where U = [h, hu, hv] is the vector of conserved variables, F and G are flux functions, and S

represents the source term function.

The method should be accurate on smooth parts of the solution and should not create spurious

oscillations near discontinuities, i.e., at the dry/wet boundaries. These equations accurately capture

both steady-states and quasi-steady flows [27, 52] in which the flux gradients are balanced by the
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a b
Figure 1. Real-world large-scale simulations of a breach in an urban area in Cologne, Germany. (a) Distant

view of the city. (b) Closer view of the flooded area.

source terms. Well-balanced numerical schemes have to be capable of exactly balancing the source

terms and numerical fluxes, so that the “lake at rest” steady states are preserved:

u = 0, v = 0, w := h+B = Const., (3)

where w is the total elevation of the water surface. When h = 0, the previous state can be reduced

to the “dry lake” steady state:

hu = 0, hv = 0, h = 0, (4)

which means that no water is present, and the discharges are also zero. A good numerical

scheme should be able to exactly preserve both “lake at rest” and “dry lake” steady states as

well as their combinations. The methods that exactly preserve these solutions are termed “well-

balanced” [3, 6, 7, 16, 31, 36, 42, 51]. Therefore, an ideal method should be well balanced in the

sense that fluxes and source terms balance exactly and they result in zero velocities for “lake at rest”

cases.

The simulation of water waves is particularly challenging near dry areas. Standard numerical

methods may fail at the dry/wet fronts and produce negative water heights. If the water height

becomes negative after the time integration, the whole computation breaks down. All computed

water heights must be non-negative. To accomplish this, various positivity preserving methods are

available [2, 3, 27, 29, 39]. The last major requirement is the stability of the scheme. In general, to

fulfill this requirement, the Courant-Friedrichs-Lewy (CFL) condition [11, 20, 29] is applied. The

CFL condition allows for each wave to travel at most one quarter of a grid cell per time step, thus

limiting the propagation of the information by limiting the time step.

In this paper, we present a new grid-based, central-upwind scheme that satisfies the criteria above.

Following a new reconstruction of the water surface and the draining time step technique [5], we

develop a well-balanced, positivity-preserving scheme for the dry/wet fronts. The new method

is two-dimensional, which makes it suitable for real-world flood simulations by overcoming

limitations of one-dimensional schemes. Furthermore, the scheme is well-balanced at the partially

flooded cells. This allows for longer time steps which results in shorter simulation run time. We

point out that our new two-dimensional scheme is not a direct dimension-by-dimension extension

of the one-dimensional scheme presented by Bollerman et al. [3], since the latter does not contain
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4 ZS. HORVÁTH ET AL.

some terms which appear only in the two-dimensional scheme. Our two-dimensional scheme is

more than a juxtaposition of two one-dimensional schemes.

The paper is structured as follows. In Section 2, we discuss the existing solutions and their

drawbacks. In Section 3, we show how to discretize the SWE on a regular grid. In Section 4,

we describe the water surface reconstruction at partially flooded cells. In Section 5, we prove

the positivity preserving property of the scheme with the new reconstruction and demonstrate the

application of the draining time step technique. In Section 6, we present the evaluation of the

proposed scheme. The scientific contributions of the proposed scheme span from fundamental

numerical developments to an added practical value to engineering, environmental and hazard

prevention applications. The paper thus contributes with the following key points:

• a physically consistent solution;

• no numerical artifacts at the boundaries;

• 2-10 times faster than previous schemes;

• evaluation on two large-scale, real-world scenarios relevant for society (urban and rural

flooding);

• an improved numerical scheme for the SWE, based on the two-dimensional reconstruction at

the dry/wet boundaries;

• well-balanced states at the dry/wet boundaries in partially flooded cells;

• application of the draining time step technique to preserve non-negative water heights while

advancing the solution in time;

• avoiding spurious high velocities at the dry/wet boundaries;

• validation against an analytical solution.

2. RELATED WORK

There are many schemes available in the literature that satisfy some of the criteria listed in the

previous section. For other types of problems (including smooth phenomena, i.e., the formation of

eddies [24, 37]), higher order schemes [36, 51] may be required. We are interested in urban and rural

flood simulations, hence, we focus on the second-order schemes that produce sufficiently accurate

results for these problems.

In the numerical treatment of the SWE, the spatial domain is discretized. For this purpose, one can

use a structured or an unstructured mesh. Most of the numerical schemes developed for the Saint-

Venant system are based on the Eulerian approach [6]. This approach uses fixed points in space

(grid points) where the fluid properties are evaluated. In general a uniform rectangular mesh or a

triangular mesh is used for this purpose [29]. The second approach is called Lagrangian, where the

fluid is being tracked as it flows through space. This is a particle-based approximation of the fluid

flow, where each fluid element or particle stores its own properties (e.g., mass, velocity, position).

We are interested in a two-dimensional, well-balanced, positivity preserving scheme discretized

on a regular rectangular mesh, which is often referred to as regular grid. The scheme has to be able

to handle dry and near dry states and solve accurately and efficiently problems characterized by

strong discontinuities (e.g., dam breaks, flood breaches).
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Kurganov and Levy [27] introduce a second-order scheme using discretization on a regular grid.

They propose to use a different reconstruction of the water surface in near dry areas than in the

wet zones. The resulting scheme is not well-balanced and violates mass conservation. Furthermore,

spurious waves may emerge in the shoal zones. The technique assumes a continuous bathymetry,

but a straightforward sampling of a discontinuous bathymetry can result in steep gradients of

the bathymetry approximation. This will affect the Courant-Friedrichs-Lewy (CFL) number [11],

restricting the time steps toward very small values.

Kurganov and Petrova [29] improve the previous work by supporting a discontinuous bathymetry.

They describe a reconstruction adjustment for the partially flooded cells, where values of the water

depth become negative at the integration points. If the reconstructed water slope creates negative

values at the integration points, they adjust the steepness of the slope so that the negative values

become zero. Their correction solves the positivity problem by raising and lowering the water level

at the left and right side of the cell according to the bathymetry function. This guarantees that all

water heights are non-negative. However, at the partially flooded cells this can lead to large errors for

small water heights and the flow velocity will grow smoothly in these formerly dry areas. Another

issue related to this modification, i.e., the water climbs up on the shores at the dry/wet boundaries.

Finally, if a cell becomes wet, it will almost never be completely dry again.

Bollermann [3] extends the Kurganov and Petrova [29] scheme and achieves well-balanced states

in the partially flooded cells by constructing an alternative correction procedure, which is similar

to the reconstruction used by Tai [45]. However, this modification works only for one dimension

and can lead to infinitely small time steps. To overcome this, time step limitation, Bollermann uses

the draining time technique introduced in [5]. This scheme is only one-dimensional and it is not

sufficient for our simulations.

Apart from the regular grid-based schemes, various techniques exist for structured and

unstructured meshes. For instance, Bryson [10] develops a well-balanced positivity preserving

numerical scheme for triangular grids. This scheme can be applied to models with discontinuous

bathymetry and irregular channel widths. Even though the method can be well adopted to irregular

topographies, its implementation is more complex, and it has higher computational requirements

than the scheme we introduce in this paper.

3. TWO–DIMENSIONAL CENTRAL–UPWIND SCHEME

Our work is based on the two-dimensional, central-upwind scheme of Kurganov and Petrova [29].

In this section, we describe this technique for solving the Saint-Venant system of shallow water

equations on uniform grids. Table I explains the notations used throughout the text.

We introduce a uniform grid xα := αΔx and yβ := βΔy, where Δx and Δy are small spatial

scales (see Figure 2), and we denote by Cj,k the finite volume cells Cj,k := [xj− 1
2
, xj+ 1

2
]×

[yk− 1
2
, yk+ 1

2
]. The central-upwind semi-discretization (discretized only in space, while time remains

continuous) of (2) can be written down as the following system of time-dependent, ordinary

differential equations (ODE) [27, 28]:

d

dt
Ūj,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

Δx
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

Δy
+ S̄j,k(t), (5)
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6 ZS. HORVÁTH ET AL.

Table I. Notations for the numerical scheme

V � vector (e.g., U = [h, hu, hv])
Ū � cell average values

Ũ � approximated values

Uj,k � vector at position [j, k]
U± � left- and right-sided point values

Un � vector at time tn (Un = U(tn))
Hx � central-upwind flux function in x-dimension

H(1) � 1st element of vector H = [H(1),H(2),H(3)]
v � variable

v∗ � special variable

Bj,k � value at position [j, k]

where Hx
j∓ 1

2 ,k
and Hy

j,k∓ 1
2

are the central-upwind fluxes and S̄j,k is an appropriate discretization of

the cell averages of the source term:

S̄j,k(t) ≈ 1

ΔxΔy

∫∫
Cj,k

S(U(x, y, t), B(x, y))dxdy, (6)

which in our case only contains the bed source term. The friction term is omitted for simplification

purposes without loss of generality.

hv

hu

y

x

j k1

2
,

j k1

2
,

j k, 1

2

j k, 1

2

j k,

LEGEND
hu discharge in x-dimension
hv discharge in y-dimension

 cell width in x-dimension
 cell width in y-dimension

        cell interface midpoints
 cell vertices
 cell center (cell average)

Figure 2. Two-dimensional grid-based representation of average water elevations w̄, discharges h̄u, h̄v, and
bathymetry B. For a bilinear reconstruction, the cell averages coincide with the values at the cell centers. The
bathymetry is approximated by its values at the cell vertices. In this figure, the middle cell is fully flooded
in the y-dimension, while only partially flooded in the x-dimension. Waterlines are represented by the blue

lines, red dashed lines mark the bathymetry slopes in both dimensions.

We start by replacing the bathymetry function B(x, y) with its continuous, piecewise bilinear

approximation B̃(x, y), which at each cell Cj,k is given by a bilinear form. The vertex values

Bj± 1
2 ,k± 1

2
of the cell Cj,k are computed based on the continuous bathymetry function (see Figure 3).
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The average value of B̃ over the cell Cj,k is equal to its value Bj,k at the center of this cell.

Furthermore, it is equal to the average value of the values at cell interface midpoints:

Bj,k =
1

4

(
Bj+ 1

2 ,k
+Bj− 1

2 ,k
+Bj,k+ 1

2
+Bj,k− 1

2

)
. (7)

Further details on the piecewise bilinear approximation of the bathymetry can be found in [29].

Using the approximated bathymetry values at cell interface midpoints (see Figure 4a-b) we have

the discretized source terms in the following form [27, 29]:

S̄
(1)
j,k(t) := 0, (8)

S̄
(2)
j,k(t) := −gh̄j,k

B
j+1

2
,k
−B

j− 1
2
,k

Δx , (9)

S̄
(3)
j,k(t) := −gh̄j,k

B
j,k+1

2
−B

j,k− 1
2

Δy , (10)

where we omit the time dependence t on the right hand side for simplification reasons without loss

of generality, as we do in the following equations.

Bj k,

B
j k1
2

1

2
,

B
j k+ −
1

2

1

2
,

B
j k− +
1

2

1

2
,

B
j k1
2

1

2
,

B x y( , )

B x y( , )

j k1

2
,

j k1

2
,

j k, 1

2

j k, 1

2

LEGEND
     continuous function
     approximated function
            cell interface midpoints
     cell vertices
     cell center (cell average)

B x y( , )

B x y( , )

j k,

Figure 3. Continuous bathymetry function B(x, y) (green) and its piecewise linear approximation B̃(x, y)
(brown dots). The approximated function values equal to the continuous ones at the cell vertices (green
dots). The cell average value (blue dot) equals both to the average value of the vertex values (green dots)

and to the average value of the values at the cell interface midpoints (brown dots).

On the next step we reconstruct the slope of the water surface in the cells (see Figure 4c). The

reconstruction of the left- and right-sided point values (see Figure 4d) is second-order accurate if

the approximate values of the derivatives (Ux)j,k and (Uy)j,k are at least first-order componentwise

approximations of Ux(xj , yk) and Uy(xj , yk). To preserve second-order accuracy, these values

are computed using a non-linear limiter. In addition, to ensure non-oscillatory reconstruction

and to avoid oscillation artifacts in the numerical solution, we use the generalized minmod
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limiter [34, 35, 44, 48]:

(Ux)j,k = minmod

(
θ
Ūj,k − Ūj−1,k

Δx
,
Ūj+1,k − Ūj−1,k

2Δx
, θ

Ūj+1,k − Ūj,k

Δx

)
,

(Uy)j,k = minmod

(
θ
Ūj,k − Ūj,k−1

Δy
,
Ūj,k+1 − Ūj,k−1

2Δy
, θ

Ūj,k+1 − Ūj,k

Δy

)
,

(11)

where θ ∈ [1, 2] is a parameter used to affect the numerical viscosity of the scheme. As suggested

in [27], we set θ = 1.3, which is close to the optimal value. The minmod function is defined as

minmod(z1, z2, z3) :=

⎧⎪⎨
⎪⎩

minj{zj}, if zj > 0 ∀j,

maxj{zj}, if zj < 0 ∀j,

0, otherwise,

(12)

and is applied in a componentwise manner to all three elements
[
w̄, h̄u, h̄v

]
of vector Ū, where we

reconstruct water levels w̄ instead of water heights h̄. Other non-linear limiters can be found in the

literature [26, 32, 34, 35, 40, 44, 48].

The values U±
j+ 1

2 ,k
=
(
w±

j+ 1
2 ,k

, hu±
j+ 1

2 ,k
, hv±

j+ 1
2 ,k

)
and U±

j,k+ 1
2

=
(
w±

j,k+ 1
2

, hu±
j,k+ 1

2

, hv±
j,k+ 1

2

)
are referred to as the left- and right-sided point values (see Figure 4d). They are obtained by the

piecewise linear reconstruction Ũ ≡ (w̃, h̃u, h̃v) for U at cell interface midpoints [xj+ 1
2
, yk] and

[xj , yk+ 1
2
] ,

Ũ(x, y) := Ūj,k + (Ux)j,k(x− xj) + (Uy)j,k(y − yk), (x, y) ∈ Cj,k. (13)

For cell Cj,k we get the following four vectors describing the reconstructed point values:

U−
j+ 1

2 ,k
=Uj,k +

Δx

2
(Ux)j,k, U+

j− 1
2 ,k

=Uj,k − Δx

2
(Ux)j,k,

U−
j,k+ 1

2

=Uj,k +
Δy

2
(Uy)j,k, U+

j,k− 1
2

= Uj,k − Δy

2
(Uy)j,k.

We note that the reconstruction procedure (11)–(13) might produce negative water heights in the

partially flooded cells [3, 29] (see Figure 4d). Therefore, we need to correct them (see Figure 4e).

The correction technique proposed in [29] violates the well-balanced property of the scheme, and

causes high velocities in these areas. Hence, we use a modified correction that has been first derived

for the one-dimensional case [3]. Ensuring both well-balanced and positivity preserving properties

for the two-dimensional version is not straightforward. Our new reconstruction affects only the

partially flooded cells while maintaining the well-balanced property of the scheme. The derivation

of the two-dimensional version is presented in Section 4.

Using the point values, we can calculate the fluxes needed for the computation of the next time

step. The central-upwind numerical fluxes Hx
j+ 1

2 ,k
and Hy

j,k+ 1
2

(see Figure 4f) are given by:

Hx
j+ 1

2 ,k
=

a+

j+1
2
,k
F

(
U−

j+1
2
,k
,B

j+1
2
,k

)
−a−

j+1
2
,k
F

(
U+

j+1
2
,k
,B

j+1
2
,k

)

a+

j+1
2
,k
−a−

j+1
2
,k

(14)

+
a+

j+1
2
,k
a−
j+1

2
,k

a+

j+1
2
,k
−a−

j+1
2
,k

[
U+

j+ 1
2 ,k

−U−
j+ 1

2 ,k

]
,
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Hy

j,k+ 1
2

=
b+
j,k+1

2

G

(
U−

j,k+1
2

,B
j,k+1

2

)
−b−

j,k+1
2

G

(
U+

j,k+1
2

,B
j,k+1

2

)

b+
j,k+1

2

−b−
j,k+1

2

(15)

+
b+
j,k+1

2

b−
j,k+1

2

b+
j,k+1

2

−b−
j,k+1

2

[
U+

j,k+ 1
2

−U−
j,k+ 1

2

]
,

where we use the following flux notations:

F(U, B) :=
[
hu, (hu)2

w−B + 1
2g(w −B)2, huv

]T
(16)

G(U, B) :=
[
hv, huv, (hv)2

w−B + 1
2g(w −B)2

]T
. (17)

We note that the central-upwind flux is a direct generalization of the well-known Harten-Lax-van

Leer flux [18, 23].

hu h

B

U j k,

B
j k1
2
,

B
j k1
2
,

a b c

U
j k+

−
1

2
,

U
j k1
2
,

d w w
j k j k−

−

−

+=
3

2

3

2
, ,

x j k2,
*

e

H
j k1
2
,H

j k1
2
,

f

negative water depth separation point

point values

( )
,

Ux j k

Figure 4. (a) Schematic view of a shallow water flow at a dry/wet boundary and definition of the variables.
(b) Conserved variables U are discretized as cell averages Ūj,k. The bathymetry function B is computed
at cell interface midpoints. (c) Slopes Ux are reconstructed using the minmod flux limiter. (d) Left- and
right-sided point values are computed at cell interface midpoints. (e) At the almost dry cells the slope is
modified to avoid negative water heights, and a separation point is generated. (f) Fluxes are computed using

the central-upwind flux function at each cell interface.

The speed values a±
j+ 1

2 ,k
and b±

j+ 1
2 ,k

of propagation [28] are obtained using the eigenvalues of the

Jacobian ∂F
∂U as follows:

a+
j+ 1

2 ,k
= max

{
u−
j+ 1

2 ,k
+
√

gh−
j+ 1

2 ,k
, u+

j+ 1
2 ,k

+
√

gh+
j+ 1

2 ,k
, 0
}

(18)

a−
j+ 1

2 ,k
= min

{
u−
j+ 1

2 ,k
−
√

gh−
j+ 1

2 ,k
, u+

j+ 1
2 ,k

−
√

gh+
j+ 1

2 ,k
, 0
}

(19)

b+
j,k+ 1

2

= max
{
v−
j,k+ 1

2

+
√

gh−
j,k+ 1

2

, v+
j,k+ 1

2

+
√

gh+
j,k+ 1

2

, 0
}

(20)

b−
j,k+ 1

2

= min
{
v−
j,k+ 1

2

−
√

gh−
j,k+ 1

2

, v+
j,k+ 1

2

−
√

gh+
j,k+ 1

2

, 0
}

(21)
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Using the semi-discrete equation (5) together with the forward Euler temporal discretization we

obtain the discrete equation for the computation of the next time step as:

Ūn+1
j,k = Ūn

j,k − λ
(
Hx

j+ 1
2 ,k

−Hx
j− 1

2 ,k

)
− μ

(
Hy

j,k+ 1
2

−Hy

j,k− 1
2

)
, (22)

where λ := Δt/Δx, μ := Δt/Δy, and the numerical fluxes Hx
j± 1

2 ,k
and Hy

j,k± 1
2

are evaluated at

time t = tn. In order to keep the numerical integration stable, the time step size Δt has to satisfy the

Courant-Friedrichs-Lewy (CFL) condition:

Δt ≤ CFLmin

{
Δx

a
,
Δy

b

}
, (23)

where CFL := 1
4 for the two-dimensional scheme, and a and b are given by

a := max
j,k

{
max{a+

j+ 1
2 ,k

,−a−
j+ 1

2 ,k
}
}
, b := max

j,k

{
max{b+

j,k+ 1
2

,−b−
j,k+ 1

2

}
}
. (24)

4. RECONSTRUCTION AT PARTIALLY FLOODED CELLS

The central-upwind scheme described in the previous section may produce negative water values

in the partially flooded cells on the reconstruction step (see Figure 5a). Even if the total amount of

water in the cell is positive (w̄j,k > Bj,k), the water level in the cell may intersect the bathymetry

(w̄j,k < Bj− 1
2 ,k

) and thus the point value at the cell interface becomes negative (hj− 1
2 ,k

< 0).

One could try replacing the first-order, piecewise, constant reconstruction with a higher order,

piecewise, linear reconstruction, but it will not guarantee positive reconstructed point values at the

cell interfaces. Therefore, we need to correct these point values. The correction proposed in [29]

solves the problem of the negative point values, but violates the well-balanced property of the

scheme (see Figure 5b). Based on the modified technique proposed in [3] for the one-dimensional

scheme (see Figure 5c), we extend this correction for two dimensions.

We assume that at a certain time t all computed water levels are higher or equal to the bathymetry

elevation (w̄j,k ≥ Bj,k). In addition, in the piecewise linear reconstruction (13), we use a non-linear

limiter to compute the slopes (Ux)j,k and (Uy)j,k. We also assume that at an arbitrary partially

flooded cell Cj,k,

Bj− 1
2 ,k

> w̄j,k > Bj+ 1
2 ,k

or Bj,k− 1
2
> w̄j,k > Bj,k+ 1

2
(25)

and that the reconstructed point values of w in cell Cj+1,k and Cj,k+1 satisfy

w+
j+ 1

2 ,k
> Bj+ 1

2 ,k
and w−

j+ 3
2 ,k

> Bj+ 3
2 ,k

,

w+
j,k+ 1

2

> Bj,k+ 1
2

and w−
j,k+ 3

2

> Bj,k+ 3
2
. (26)

Symmetric cases can be treated the same way.
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wj k,

wj k1,

xw

w j k,

wj k1,

xw x j k,
*

wj k,

wj k1,

xw

a b c

Figure 5. Approximations of the wet/dry front reconstruction. The blue dashed line represents the waterline
of the fully flooded cell. (a) Wrong approximation by the piecewise linear reconstruction, which produces a
negative water value. (b) Positivity preserving, but unbalanced piecewise linear reconstruction. (c) Positivity

preserving, well-balanced, piecewise linear reconstruction.

We start with computing the water surface wj,k in cell Cj,k. In order to distinguish between the

two dimensions, wx
j,k marks the waterline for the x- and wy

j,k for the y-dimension. The water level

is the average elevation of the water surface in a cell. The waterline is a horizontal line which

represents the real water surface in a cell computed from the amount of water present in that cell,

which means it can differ from the average water elevation. If the cell is fully flooded, we can

represent the line by a linear function (see Figure 6a). Otherwise, it has to be represented by a

piecewise linear function, with a separation point x∗
j,k, which defines the location where the water

height becomes zero (see Figure 5c). We choose a water height in a way that the volume enclosed

between the surface and the bathymetry equals to the amount of water in that cell (see Figure 6b).

The amount of water in cell Cj,k is defined by Δx · h̄j,k and Δy · h̄j,k for each direction respectively,

where h̄j,k := w̄j,k −Bj,k. These areas can be represented by trapezoids, if the cell is fully filled,

or by triangular shapes, if the cell is partially flooded (see Figure 6). We note that a cell can be fully

flooded in one dimension, while only partially flooded in the other. If cell Cj,k is fully flooded, the

following conditions hold:

h̄j,k ≥ Δx

2
|(Bx)j,k|, h̄j,k ≥ Δy

2
|(By)j,k|, (27)

where h̄j,k is the average water height of the cell, (Bx)j,k and (By)j,k are the batrymetry slopes in x

and y directions. In this case, functions sxj,k(x, y) and syj,k(x, y) represent the water surface for both

a b
wj k
x
,

x h j k, wj k
x
,

x h j k,

xw

Figure 6. Waterline wx
j,k computation using the conservation of the average water height h̄j,k, where

Δx · h̄j,k equals to the amount of water in the cell. (a) In the fully flooded cell, the waterline does not
intersect the bathymetry. (b) In the partially flooded cell, xw marks the intersection point between the

waterline and the bathymetry.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2014)

Prepared using fldauth.cls DOI: 10.1002/fld



12 ZS. HORVÁTH ET AL.

dimensions:

sxj,k(x, y) = w̄j,k, syj,k(x, y) = w̄j,k,

otherwise the free surface is a continuous piecewise linear function given by

sxj,k(x, y) =

{
Bj,k(x, y), if x < x∗

w,

wx
j,k, otherwise,

syj,k(x, y) =

{
Bj,k(x, y), if y < y∗w,

wy
j,k, otherwise,

(28)

where x∗
w and y∗w are the boundary points separating the dry and wet parts in the cell Cj,k, and

Bj,k(x, y) is a two-dimensional plane representing the bathymetry approximation in the cell. The

boundary separation points can be determined by the following equations:

Δx∗
w =

√
2Δxh̄j,k

|(Bx)j,k| Δy∗w =

√
2Δyh̄j,k

|(By)j,k| (29)

where Δx∗
w = xj+ 1

2
− x∗

w and Δy∗w = yj+ 1
2
− y∗w. More details on deriving this equation can be

found in [3, 4]. The average total elevation of the water surface for the wet/dry cell is then computed

as

wx
j,k = Bj,k +

(
Δx∗

w − Δx

2

)
|(Bx)j,k|

wy
j,k = Bj,k +

(
Δy∗w − Δy

2

)
|(By)j,k|

(30)

Note that if a cell satisfies at least one condition of (27), then it is a partially flooded cell with

Δx∗
w < Δx or Δy∗w < Δy.

In the following, we discuss the reconstruction of the waterline for the x dimension. It can be

computed analogously for the y dimension. At this point we know which cells are partially flooded.

For these cells we modify the reconstruction of the water height h to ensure the well-balanced

property. We assign the value of the reconstructed water height of the next fully flooded cell Cj+1,k

to the value of the same interface at the partially flooded cell Cj,k, w−
j+ 1

2 ,k
:= w+

j+ 1
2 ,k

. Using this

value and the conservation of the average water height h̄j,k, we determine the waterline wx
j,k in cell

Cj,k. This assignment implies that h−
j+ 1

2 ,k
:= w−

j+ 1
2 ,k

−Bj+ 1
2 ,k

= w+
j+ 1

2 ,k
−Bj+ 1

2 ,k
=: h+

j+ 1
2 ,k

.

If the amount of water in cell Cj,k is sufficiently large, then h+
j− 1

2 ,k
≥ 0 and satisfies

h̄j,k =
1

2

(
h−
j+ 1

2 ,k
+ h+

j− 1
2 ,k

)
, (31)

from which we obtain the total water level w+
j− 1

2 ,k
= h+

j− 1
2 ,k

+Bj− 1
2 ,k

, and thus the well-balanced

reconstruction for cell Cj,k is completed.

If the value of h+
j− 1

2 ,k
at the other interface computed from the conservation requirement (31)

is negative, we replace the waterline wx
j,k in cell Cj,k with two linear pieces. The breaking point

between the “wet” and “dry” pieces is marked by x∗
j,k and is determined by the conservation

requirement, which in this case reads

Δx · h̄j,k =
Δx∗

j,k

2
h−
j+ 1

2 ,k
, (32)
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A TWO-DIMENSIONAL SCHEME OF DRY/WET FRONTS FOR THE SAINT-VENANT SYSTEM 13

where

Δx∗
j,k = |xj+ 1

2 ,k
− x∗

j,k|.

Using the idea from [3] and combining the above two cases, we obtain the reconstructed value

h+
j− 1

2 ,k
= max

{
0, 2h̄j,k − h−

j+ 1
2 ,k

}
. (33)

As in [3], we also generalize the definition of Δx∗
j,k and set

Δx∗
j,k = Δx ·min

{
2h̄j,k

h−
j+ 1

2 ,k

, 1

}
. (34)

The well-balanced reconstruction for the x dimension is completed. Following this technique, one

can easily derive it for the second dimension.

U j k,

B
j k1
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j k1
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,

U j k,

B
j k1
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,
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,
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−
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2
,

x j k,
*

Figure 7. Illustrations of reconstruction cases for the wet/dry fronts. The upper row shows the average water
levels in the cells, the row in the middle show the reconstructed point values, and the bottom row shows the
modified point values. (a) The amount of water is enough to fill the cell, the reconstruction is correct. (b)
The amount of water is enough to fill the cell, but a negative point value was produced, therefore we set it
to zero, and the value on the right side requires correction due to the conservation criterion. (c) The cell is
partially flooded, and after equalizing the water height between the current and the next fully flooded cell,
both values become positive. (d) The cell is partially flooded, and there is not enough water to fill it after the

equalization.

We mentioned that the piecewise linear reconstuction (12)–(13) does not guarantee the positivity

of the point values at the dry/wet fronts, thus they have to be corrected. This approach only modifies

the reconstructed water values w̃±
j± 1

2 ,k
. Next, as in [3] we summarize the possible cases of the
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14 ZS. HORVÁTH ET AL.

modified reconstruction, where w̄j,k is the average water level in the cell, w̃±
j± 1

2 ,k
are the point

values reconstructed using the minmod flux limiter (11), and w±
j± 1

2 ,k
are the corrected values:

Case 1. If w̄j,k > Bj− 1
2 ,k

and w̄j,k > Bj+ 1
2 ,k

then cell Cj,k is fully flooded.

1A. If w̃+
j− 1

2 ,k
≥ Bj− 1

2 ,k
and w̃−

j+ 1
2 ,k

≥ Bj+ 1
2 ,k

the cell is flooded and we set w±
j+ 1

2 ,k
:−

w̃±
j+ 1

2 ,k
(see Figure 7a).

1B. Otherwise, as in [29], we redistribute the water (see Figure 7b) in the following way:

If w̃+
j− 1

2 ,k
< Bj− 1

2 ,k
, then set (wx)j,k :=

w̄j,k −Bj− 1
2 ,k

Δx/2
,

=⇒ w−
j+ 1

2 ,k
= 2w̄j,k −Bj− 1

2 ,k
, w+

j− 1
2 ,k

= Bj− 1
2 ,k

.

and symmetrically

If w̃−
j+ 1

2 ,k
< Bj+ 1

2 ,k
, then set (wx)j,k :=

Bj+ 1
2 ,k

− w̄j,k

Δx/2
,

=⇒ w−
j+ 1

2 ,k
= Bj+ 1

2 ,k
, w+

j− 1
2 ,k

= 2w̄j,k −Bj+ 1
2 ,k

,

Case 2. If Bj− 1
2 ,k

> w̄j,k > Bj+ 1
2 ,k

, then cell Cj,k is possibly partially flooded.

2A. If w̃+
j+ 1

2 ,k
> Bj+ 1

2 ,k
and w̃−

j+ 3
2 ,k

> Bj+ 3
2 ,k

, then cell Cj+1,k is fully flooded and

w+
j+ 1

2 ,k
= w̃+

j+ 1
2 ,k

. We set w−
j+ 1

2 ,k
:= w+

j+ 1
2 ,k

and h−
j+ 1

2 ,k
:= w−

j+ 1
2 ,k

−Bj+ 1
2 ,k

.

2A1. If 2h̄j,k − h−
j+ 1

2 ,k
≥ 0, then the amount of water in cell Cj,k is sufficiently large, and

we set h+
j− 1

2 ,k
= 2h̄j,k − h−

j+ 1
2 ,k

, so w+
j− 1

2 ,k
= h+

j− 1
2 ,k

+Bj− 1
2 ,k

(see Figure 7c).

2A2. Otherwise set h−
j+ 1

2 ,k
= 0, w+

j− 1
2 ,k

= Bj− 1
2 ,k

and Δx∗
j,k as in (34) (see Figure 7d).

2B. Otherwise set h−
j+ 1

2 ,k
:= wj,k −Bj+ 1

2 ,k
and Δx∗

j,k := Δx∗
w. This situation is not generic

and may occur only in the under-resolved computations [3].

Case 3. Bj− 1
2 ,k

< w̄j,k < Bj+ 1
2 ,k

is analogous to Case 2.

The correction cases for the second dimension can be derived analogously by changing indices from

j − 1
2 , k and j + 1

2 , k to j, k − 1
2 and j, k − 1

2 .

At this point, the corrected water heights of the reconstructed point values are non-negative.

However, they may be very small or even zero. Since u = hu
h and v = hv

h , these computations may

lead to large errors in the partially flooded cells for small water heights and they have a singularity at

zero water height (h = 0). To deal with this problem, we use the desingularization suggested in [29]:

u =

√
2h(hu)√

h4 +max(h4, ε)
, v =

√
2h(hv)√

h4 +max(h4, ε)
, (35)

where ε is a small apriori chosen positive number. This has a dampening effect on the velocities as

the water height approaches zero. Determining a proper value for ε is very difficult. High values lead

to large errors in the simulation results, while low values give small time steps. In our simulation,

we used the suggestion of Brodtkorb [8]:

ε = E0 max (1,min (Δx,Δy)) , (36)
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with E0 = 10−2.

5. POSITIVITY PRESERVING IN TIME INTEGRATION

In the previous section, we have discussed the well-balanced spatial reconstruction of the point

values for partially flooded cells. In this section, we continue with the time-quadrature for the fluxes

at partially flooded cells. This means the discretization of the semi-discrete scheme in time, and

advancing by Δt. We follow the technique used in [3] and start with modifying the time integration

of the water height so that it remains positive after its computation. Assuming that the water height

is positive for all h̄n
j,k at time step n, it has to remain positive for the next time step n+ 1:

h̄n+1
j,k = h̄n

j,k −Δt
(Hx)

(1)

j+ 1
2 ,k

− (Hx)
(1)

j− 1
2 ,k

Δx
−Δt

(Hy)
(1)

j,k+ 1
2

− (Hy)
(1)

j,k− 1
2

Δy
≥ 0, (37)

where we use (22) and subtract Bj,k from both sides, since w̄j,k = h̄j,k +Bj,k.

Using (37) we introduce the draining time step [5] for the two-dimensional scheme:

Δtdrainj,k =
ΔxΔyh̄n

j,k

Δy
(
(Hx)

(1)

j+ 1
2 ,k

+ (Hx)
(1)

j+ 1
2 ,k

)
+Δx

(
(Hy)

(1)

j,k+ 1
2

+ (Hy)
(1)

j,k+ 1
2

) , (38)

which describes how long it takes for cell Cj,k to become dry due to the outflow fluxes. Now we

modify the evolution step (22) using the draining time step:

h̄n+1
j,k = h̄n

j,k −Δtj,k
(Hx)

(1)

j+ 1
2 ,k

− (Hx)
(1)

j− 1
2 ,k

Δx
−Δtj,k

(Hy)
(1)

j,k+ 1
2

− (Hy)
(1)

j,k− 1
2

Δy
, (39)

where the time steps at the cell interfaces are computed by:

Δtj,k =

⎧⎨
⎩min(Δt,Δtdrainj,k ), if ∇ ·Hj,k > 0,

Δt, if ∇ ·Hj,k ≤ 0,
(40)

which means that the draining time step is only used if the water height decreases during the

integration and the cell is at risk of drying out. If the flux divergence ∇ ·Hj,k > 0 for a fully flooded

cell Cj,k, then the draining time can have higher values than the global time step and we select select

the smallest of the two. If ∇ ·Hj,k ≤ 0, i.e., there is more water entering than leaving the cell, then

we use the global time step. This means that the draining time step is applied only to the partially

flooded cell in case of the positive divergence. Hence, the time evolution of the fully flooded cells

remains as in [29].

Since we use the global time step Δt for the source terms S̄
(2)
j,k and S̄

(3)
j,k in the time evolution step,

we have to split the momentum fluxes F (2)(U, B) and G(3)(U, B) into advection (a) and gravity
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(g) driven parts to ensure the well-balanced property:

F (2),a(U, B) := (hu)2

w−B and F (2),g(U, B) :=
g

2
(w −B)2

G(3),a(U, B) := (hv)2

w−B and G(3),g(U, B) :=
g

2
(w −B)2

Due to this modification, the source terms exactly balance the gravity-driven part of the flux. Using

the split fluxes, the modified central-upwind fluxes read:

H
(3),g

j,k+ 1
2

(t) =
a+
j,k+ 1

2

G(3),g
(
U−

j,k+ 1
2

)
− a−

j,k+ 1
2

G(3),g
(
U+

j,k+ 1
2

)
a+
j,k+ 1

2

− a−
j,k+ 1

2

(41)

+
a+
j,k+ 1

2

a−
j,k+ 1

2

a+
j,k+ 1

2

− a−
j,k+ 1

2

[
U

(2),+

j,k+ 1
2

−U
(2),−
j,k+ 1

2

]
,

and

H
(3),a

j,k+ 1
2

(t) =
a+
j,k+ 1

2

G(3),a
(
U−

j,k+ 1
2

)
− a−

j,k+ 1
2

G(3),a
(
U+

j,k+ 1
2

)
a+
j,k+ 1

2

− a−
j,k+ 1

2

. (42)

The modified central-upwind fluxes H
(2),a

j+ 1
2 ,k

(t) and H
(2),g

j+ 1
2 ,k

(t) can be derived analogously, and their

one-dimensional forms can be found in [3], which are very similar to the two-dimensional ones.

Using the new fluxes, we get the new update of discharges hu and hv:

h̄u
n+1
j,k = h̄u

n
j,k −ΔtS̄

(2),n
j,k −Δt

(Hx)
(2),g

j+ 1
2 ,k

− (Hx)
(2),g

j− 1
2 ,k

Δx

−Δtj,k

⎛
⎝ (Hy)

(2)

j,k+ 1
2

− (Hy)
(2)

j,k− 1
2

Δy
−

(Hx)
(2),a

j+ 1
2 ,k

− (Hx)
(2),a

j− 1
2 ,k

Δx

⎞
⎠ (43)

h̄v
n+1
j,k = h̄v

n
j,k −ΔtS̄

(3),n
j,k −Δt

(Hy)
(3),g

j,k+ 1
2

− (Hy)
(3),g

j,k− 1
2

Δy

−Δtj,k

⎛
⎝ (Hx)

(3)

j+ 1
2 ,k

− (Hx)
(3)

j− 1
2 ,k

Δx
−

(Hy)
(3),a

j,k+ 1
2

− (Hy)
(3),a

j,k− 1
2

Δy

⎞
⎠ (44)

This new finite volume scheme consisting of (39), (43) and (44) is both well-balanced and positivity

preserving even in the presence of partially flooded cells.

As in [3] for the one-dimensional scheme, we prove that the new two-dimensional central-upwind

finite volume scheme remains well-balanced for both “lake at rest” and “dry lake” states.

Theorem 5.1
Consider the system (1) and the fully discrete central-upwind scheme (39), (43) and (44). Assume

that the numerical solution U(tn) corresponds to the steady state which is a combination of the

“lake at rest” (3) and “dry lake” (4) states in the sense that wj,k = Const. and u = 0, v = 0 whenever

hj,k > 0. Then U(tn+1) = U(tn), that is, the scheme is well-balanced.
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Proof
We have to show that in all cells the fluxes and the source term discretization cancel exactly.

First, we mention the fact that the reconstruction procedure derived in Section 4 preserves both the

“lake at rest” and “dry lake” steady states and their combinations. For all cells where the original

reconstruction is not corrected, the resulting slopes are zero and therefore the reconstructed point

values equal to the average water level there, w∓
j± 1

2

= wj,k. As hu = 0 and hv = 0 in all cells,

the reconstructions for hu and hv reproduce the constant point values (hu)∓
j± 1

2 ,k
= (hu)∓

j,k± 1
2

=

(hv)∓
j± 1

2 ,k
= (hv)∓

j,k± 1
2

= 0, ∀j, k. Thus, the draining time is equal to the global time step, i.e.,

Δtdrainj,k = Δt.

First, we show that the update of the water levels satisfy the criteria above:

H
(1),x

j+ 1
2 ,k

=
a+
j+ 1

2 ,k
(hu)−

j+ 1
2 ,k

− a−
j+ 1

2 ,k
(hu)+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(h+B)+

j+ 1
2 ,k

− (h+B)−
j+ 1

2 ,k

]
= 0

as B+
j+ 1

2 ,k
= B−

j+ 1
2 ,k

, h+
j+ 1

2 ,k
= h−

j+ 1
2 ,k

and (hu)+
j+ 1

2

= (hu)−
j+ 1

2 ,k
= 0. The same holds for H

(1),y

j,k+ 1
2

with hv. From this we get:

w̄n+1
j,k = h̄n+1

j,k +Bj,k = h̄n
j,k +Bj,k = w̄n

j,k.

Second, we analyze the update of the discharge using (43) and (44). Using the same argument and

setting u±
j+ 1

2 ,k
= u±

j,k+ 1
2

= v±
j+ 1

2 ,k
= v±

j,k+ 1
2

= 0 at the points px = pj+ 1
2 ,k

and py = pj,k+ 1
2

where

h+
j+ 1

2 ,k
= h−

j+ 1
2 ,k

= h+
j,k+ 1

2

= h−
j,k+ 1

2

= 0, for the second and third component we obtain:

H
(2),a,x

j+ 1
2 ,k

+H
(2),g,x

j+ 1
2 ,k

=
a+
j+ 1

2 ,k
(hu)−

j+ 1
2 ,k

− a−
j+ 1

2 ,k
(hu)+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
( g2h

2)−
j+ 1

2 ,k
− a−

j+ 1
2 ,k

( g2h
2)+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(hu)+

j+ 1
2 ,k

− (hu)−
j+ 1

2 ,k

]

=

(
uj+ 1

2 ,k
+
√

ghj+ 1
2 ,k

) (
g
2h

2
)−
j+ 1

2 ,k
−
(
uj+ 1

2 ,k
−
√

ghj+ 1
2 ,k

) (
g
2h

2
)+
j+ 1

2 ,k(
uj+ 1

2 ,k
+
√

ghj+ 1
2 ,k

)
−
(
uj+ 1

2 ,k
−
√

ghj+ 1
2 ,k

)
=

g

2
h2
j+ 1

2 ,k
(45)

H
(2),y

j+ 1
2 ,k

=
a+
j+ 1

2 ,k
(huv)−

j+ 1
2 ,k

− a−
j+ 1

2 ,k
(huv)+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
(huv)+

j+ 1
2 ,k

− (huv)−
j+ 1

2 ,k

]
= 0, (46)
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where

hj+ 1
2 ,k

:= h+
j+ 1

2 ,k
= h−

j+ 1
2 ,k

and hj,k+ 1
2

:= h+
j,k+ 1

2

= h−
j,k+ 1

2

,

uj+ 1
2 ,k

:= u+
j+ 1

2 ,k
= u−

j+ 1
2 ,k

and uj,k+ 1
2

:= u+
j,k+ 1

2

= u−
j,k+ 1

2

.

Following the same rules, it can straightforwardly be proven that H
(3),a,y

j,k+ 1
2

+H
(3),g,y

j,k+ 1
2

= g
2h

2
j,k+ 1

2

and

H
(3),x

j,k+ 1
2

= 0. Therefore, the finite update (43) and (44) for the studied steady state after substituting

the source quadrature (9)–(10) reads as,

(h̄u)n+1
j,k = (h̄u)nj,k − Δt

Δx

[
g

2

(
hj+ 1

2 ,k

)2
− g

2

(
hj− 1

2 ,k

)2]
+Δt S̄

(2),n
j,k

= (h̄u)nj,k − Δt

Δx

[
g

2

(
hj+ 1

2 ,k

)2
− g

2

(
hj− 1

2 ,k

)2]
+

Δt

Δx
gh̄j,k

(
Bj+ 1

2 ,k
−Bj+ 1

2 ,k

)
= (h̄u)nj,k

where we have used(
hj+ 1

2 ,k

)2
−
(
hj− 1

2 ,k

)2
2

= −h̄n
j,k

(
Bj+ 1

2 ,k
−Bj− 1

2 ,k

)
, (47)(

hj,k+ 1
2

)2
−
(
hj,k− 1

2

)2
2

= −h̄n
j,k

(
Bj,k+ 1

2
−Bj,k− 1

2

)
. (48)

We have to verify (47) and (48). In the fully flooded cells, where wj,k > Bj± 1
2 ,k

, we have

(
hj+ 1

2 ,k

)2
−
(
hj− 1

2 ,k

)2
2

=
hj+ 1

2 ,k
+ hj− 1

2 ,k

2

(
hj+ 1

2 ,k
− hj− 1

2 ,k

)
(49)

= h̄n
j,k

(
wj,k −Bj+ 1

2 ,k
− wj,k −Bj− 1

2 ,k

)
= −h̄n

j,k

(
Bj+ 1

2 ,k
−Bj− 1

2 ,k

)
and thus (47) is satisfied. One can easily prove the same for (48). It remains to verify the solution

for

(h̄v)n+1
j,k = (h̄v)nj,k − Δt

Δy

[
g

2

(
hj,k+ 1

2

)2
− g

2

(
hj,k− 1

2

)2]
+Δt S̄

(3),n
j,k

= (h̄v)nj,k − Δt

Δy

[
g

2

(
hj,k+ 1

2

)2
− g

2

(
hj,k− 1

2

)2]
+

Δt

Δy
gh̄j,k

(
Bj,k+ 1

2
−Bj,k+ 1

2

)
= (h̄v)nj,k

which can be satisfied by using (48). In the partially flooded cells, where wj,k < Bj− 1
2 ,k

, we have

hj− 1
2 ,k

= 0, and thus using (32) and (47) yields

(
hj+ 1

2 ,k

)2
2

=
Δx∗

j,khj+ 1
2 ,k

2Δx

(
Bj+ 1

2 ,k
−Bj+ 1

2 ,k

)
= −

hj+ 1
2 ,k

2
Δx∗

j,k(Bx)j,k, (50)

which is true since at the studied-steady situation, x∗
j,k = x∗

w, which implies that Δx∗
j,k = Δx∗

w,

and hence, −Δx∗
j,k(Bx)j,k = hj+ 1

2 ,k
. Finally, we show the same for wj,k < Bj,k− 1

2
, hj,k− 1

2
= 0
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a b

Water wave

c

Wet area Dry area

Figure 8. Comparison of drying of the KP07 and the HWP14 schemes. We simulate a wave run-up on a
slope and visualize the solution after 1000 seconds. (a) Initial condition. (b) Solution of the KP07 scheme,
where the upper part of the simulation domain is wet. There is a thin layer of water, which is incorrect. (c)

Solution of the HWP14 scheme, the upper part of the domain is dry.

using (48):

(
hj,k+ 1

2

)2
2

=
Δy∗j,khj,k+ 1

2

2Δy

(
Bj,k+ 1

2
−Bj,k+ 1

2

)
= −

hj,k+ 1
2

2
Δy∗j,k(By)j,k, (51)

which is also true since y∗j,k = y∗w. This implies that Δy∗j,k = Δy∗w, and hence, −Δy∗j,k(By)j,k =

hj,k+ 1
2
.

This concludes the proof of the theorem.

6. EVALUATION

The new scheme proposed in this paper is denoted as HWP14 scheme. In order to test the scheme

and compare it with an existing scheme, we implemented the HWP14 and KP07 [29] schemes for

computation on GPUs. We then performed a number of numerical experiments. As a first step, we

analyzed a wave run-up on a slope. This simulation is followed by a verification against a two-

dimensional parabolic basin benchmark for which an analytical solution exists. To demonstrate the

stability and to measure the performance of the schemes, we created two real-world scenarios. The

first is a breach-initiated flood in an urban area, and the second is a flood event in a rural area.

6.1. Wave run-up on a slope

In this comparison, we compare the schemes on a small domain, where we simulate a wave run-up

on a slope. We let the water oscillate for 1000 seconds and visualize the results (see Figure 8). For

the KP07 scheme, the upper part of the domain does not dry out. If a cell becomes wet, it will always

contain a very thin layer of water, and will never dry out again. For the HWP14 scheme, the upper

part of the slope dries out due to the new reconstruction and draining time step technique.

6.2. Parabolic Basin Benchmark

The analytical solution of the parabolic basin case was first introduced by Thacker [47]. It describes

time-dependent oscillations of planar water surface in a parabolic basin. It serves as a good basis

to compare different numerical schemes [2, 14, 19, 33, 43]. Recently, Sampson et al. [43] extended

the solution of Thacker to support bed friction. However, their solution is limited to one dimension.
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In this two-dimensional case, we use the same setup as Holdahl et al. [25]. The bathymetry of the

two-dimensional parabolic basin is given by:

B(x, y) = D0

(
x2 + y2

L2
− 1

)
. (52)

The water surface elevation and the velocities are given by:

w(x, y) = 2AD0 (x cosωt± y sinωt+ LB0)

u(x, y) = −A cosωt

u(x, y) = ±A sinωt

∣∣∣∣∣∣∣∣ ω =

√
2D0

L2
, (53)

where we set D0 = 1, L = 2500, A = L
2 , B0 = − A

2L , the gravitational constant g = 1, the

desingularization ε = 0.01, and use 100× 100 grid cells with a second-order accurate Runge-Kutta

time integrator. Figure 9 shows our simulation results for two snapshots in time, where we compare

the solutions of the numerical solvers to the analytical one. We visualize a one-dimensional slice in

x-dimension in the middle of the computation domain. We plot values wj,k at cell centers, which

are the average values. Both the KP07 and the HW14 schemes capture well the water levels of the

analytical solution. However, there is an error accumulating for the velocities along the wet/dry

boundaries. This can be found in many schemes [25, 27, 29], and it is difficult to avoid. We can

reduce the error by setting the desingularization ε to a higher value. However, higher ε values

cause spurious oscillations in the KP07 scheme, which were not observed in the HWP14 scheme.

Furthermore, for small water heights, numerical errors can be introduced when calculating the

velocity u = hu/h. This is related to a limited floating-point precision [50].

6.3. Real-world performance benchmark in Cologne

In the first real-world scenario, we simulate a levee breach in the city of Cologne, Germany. This

scenario models a failure of the mobile flood protection walls, which are installed along the river to

protect the city. If the mobile wall collapses or the water height becomes high enough to overtop the
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Figure 9. Simulation of oscillating water in a parabolic basin, compared to the analytical solution after (a)
300 seconds and (b) 400 seconds. Values are plotted at the cell centers. Blue dots in the inlay windows

represent positions of the cell centers.
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Breach position

Mobile wall
Damaged buildings

River

a b

Hydrograph

1km

Invalid area

Figure 10. Real-world case studies. (a) Simulation of a levee breach caused by a failure of the mobile
protection walls in the city of Cologne, Germany. The green line along the riverside represents the mobile
protection wall. We removed a short section of the wall to simulate a breach (indicated in blue). The buildings
are colored according to the damage, where red denotes high damage and grey no damage. (b) Results of a
5 days long hydrograph-based flood simulation in Lobau, Austria. The bathymetry is colored according to
the elevation values. Red color represents higher altitudes, green color represents lower altitudes. Wet areas

are shown in blue. The hydrograph is supplied for the short section at the bottom right corner.

walls, the city gets flooded. These two cases can happen in real-world situations, and it is important

to understand their impacts.

In our case study, we simulate a one hour long levee breach. We simulate the breach by opening

a short section of the mobile walls and letting the water flow into the city (see Figure 10a). The

buildings are colored based on the computed damage, where grey represents no damage, yellow is

the middle damage, and red is the highest damage [41].

To assess the performance of our numerical scheme, we carried out a benchmark and compared

the number of executed time steps (iterations) of the two schemes. A longer time step size requires

fewer iterations to simulate the same duration and thus increases the performance. Figure 11 shows

our performance results for a 60 minute long simulation run. The size of the simulation domain is

1.4× 1.6 kilometers, it contains 277× 329 cells, where each cell is 5× 5 meters large. In this case

study the KP07 scheme executes ≈ 4× more time steps than the HWP14 scheme. The average time

step per second is 0.08678 for the HWP14 scheme and 0.02253 for the KP07 scheme. The reason

for this is that the KP07 scheme is not well-balanced at the dry/wet boundaries, thus high velocities

appear at these locations. To keep the scheme stable, the CFL condition is applied. This means that

the size of the actual time step is computed based on the highest velocity in the computation domain.

Therefore, it acts as a limiting factor for the time step size. The HWP14 scheme does not suffer from

this problem and can perform longer jumps in time while preserving numerical stability. We show

both the instantaneous and cumulative number of time steps. Figure 11a shows the average number

of time steps per minute. Figure 11b shows the total number of time steps for the 60 minutes long

simulation run. During the first five minutes, the number of time steps is increasing, as the water

starts to flow into the city. After five minutes, as the flow starts to stabilize, the number of time steps

in the HWP14 scheme is stabilizing, too. In the KP07 scheme, the number of time steps continues

to increase. Compared to the KP07 scheme, the HWP14 scheme is more stable with respect to the

number of time steps.
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a b
Figure 11. Real-world performance benchmark of a breach flood in the city of Cologne, Germany. We
compare the time step performance of the KP07 and the HWP14 schemes. The figure shows the number
of time steps as a function of the simulated time. Lower numbers corresponds to longer time step sizes in the
simulation and thus to increased performance. (a) Average number of time steps per minute. (b) Cumulative

number of time steps during the simulated 60 minutes.

a b

High

Low

High

Low

Figure 12. Velocity profile of the real-world simulation in Lobau. The bathymetry is colored according to
the velocity magnitude. (a) Simulation results of the KP07 scheme. High velocity spots (red) appear at the
dry/wet boundaries. (b) Simulation results of the HWP14 scheme. No high velocity spots, the velocity profile

is consistent.

6.4. Real-world performance benchmark in Lobau

The second case study involves the Lobau area, which is the alluvial backwater and floodplain of

the Danube-Auen National Park. It extends on the left bank of the river Danube from river kilometer

(rkm) 1918 to rkm 1908 downstream of the city of Vienna (see Figure 10b). If the water level in the

Danube rises, water flows from the river into the floodplain, causing regular flooding events. The

size of the area is 1474 ha and it consists of floodplain forests and surface water bodies.

In this case study, we use a hydrograph from 13.01.2011 and simulate a 12 hours long flooding.

The size of the simulation domain is 7.5× 5 kilometers, it contains 2508× 1682 cells, where

each cell is 3× 3 meters large. We simulate a period on 13.01.2011 for which we prescribe the

hydrograph in the bottom right corner of the domain as a boundary condition. Both water level and

discharge are prescribed. Discharge values describe the inflow from the Danube into the Lobau.

Even though this is a rural area and does not contain any buildings, it is challenging to perform

simulations for this region, since it has a very complex bathymetry (lots of small channels and steep

slopes). Here, we present only the first 12 hours of the simulation, since the KP07 scheme slows
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down dramatically after 12 hours and 50 minutes. At this point, the actual time step size is 0.000156

seconds and continues to decrease. The reason for this is that the velocities are accumulating and

abnormally rising at the steep dry/wet boundaries limiting the time step size. Figure 12 shows the

high velocity spots, which are responsible for the simulation slow down. In the HWP14 scheme,

the velocity profile is more consistent. For this special case, the HWP14 scheme was ≈ 8× faster

compared to the KP07 scheme during the 12 hours long simulation. This difference gets higher as

the time advances. Using the HWP14 scheme, we have successfully performed a 168 hours long

simulation, where the solver remained stable.

Our new HWP14 scheme executes approximately the same number of time steps in both case

studies, which is below 1000 time steps per minute. The KP07 scheme is not as stable regarding

the number of time steps. For the first case study, the average number of time steps is between

1000− 4000 time steps per minute, while for the second case study, it is continuously increasing

(see Figure 13).

7. SUMMARY

We presented a two-dimensional numerical scheme for the Saint-Venant system of the shallow water

equations. We used a new two-dimensional reconstruction and a special correction procedure to

ensure positive water heights and well-balanced states at partially flooded cells. The positivity of the

water height is guaranteed by the draining time step, which is activated in the partially flooded cells

if the divergence is positive. We proved that the scheme is well-balanced and positivity preserving in

the presence of partially flooded cells. Furthermore, it preserves “lake-at-rest” and “dry lake” steady

states, as well as their combinations. The scheme was verified against the analytical solution of the

parabolic basin benchmark. We measured and compared the time step performance of the KP07

and HWP14 schemes for two real-world scenarios. The first scenario was a flood event caused

by a breach in the flood protection walls of the city of Cologne. The second scenario considered

a flooding in the national park of Lobau near Vienna, where we used a hydrograph as a boundary

condition to simulate the incoming flood from the Danube river. The new scheme proved its stability

and it also proved to be faster than the KP07 scheme, as it needs fewer time steps to simulate

the same time span due to the removal of spurious high velocities at the wet/dry boundaries.

a b
Figure 13. Real-world performance benchmark of a flood event in the Danube-Auen National Park, in Lobau,
Austria. The figure shows the number of time steps as a function of the simulated time. Lower numbers
correspond to longer time steps in the simulation and thus to increased performance. (a) Average number of

time steps per minute. (b) Total number of time steps during the simulated 12 hours.
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schéma implicite de différences finies. La Houille Blanche, 1(1):33–39, 1964.

13. Clint Dawson and Christopher M Mirabito. The shallow water equations. University of Texas, Austin, 29, 2008.

14. Marc de la Asunción, Manuel J Castro, ED Fernández-Nieto, José M Mantas, Sergio Ortega Acosta, and
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Blöschl. Flood fatalities in africa: From diagnosis to mitigation. Geophysical Research Letters, 37(22), 2010.

18. Bernd Einfeldt. On godunov-type methods for gas dynamics. SIAM Journal on Numerical Analysis, 25(2):294–

318, 1988.
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