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ABSTRACT

We present a novel pipeline for acquisition protocol indepen-
dent spine labeling in volumetric Magnetic Resonance Imag-
ing (MRI) data of the lumbar spine. Our learning-based sys-
tem uses local Entropy-optimized Texture Models (ETMs) for
reducing the intensity scale in clinical data to only a few gray
levels. The task of intervertebral disc localization is then per-
formed on the normalized data. The benefit of our method
is, that we can deal with various MRI protocols, such as T1-
weighted (T1w) and T2-weighted (T2w) scans. Using the en-
tropy objective allows us furthermore to apply the algorithm
to acquisition protocols which are not covered by the train-
ing set. We achieve high disc localization accuracies for both,
MRI protocols which are covered and not covered by training.
The approach can be easily extended to other modalities.

Index Terms— Spine labeling, MRI, Entropy-optimized
Texture Models

1. INTRODUCTION

Labeling of the spinal column in MR sequences is an impor-
tant task in clinical practice, as it serves the diagnosis and op-
eration planing of spine-related pathologies. However, man-
ual labeling is a time-consuming task for clinicians, hence
automatic or semi-automatic approaches are in demand.
There is a wide range of different MR acquisition proto-
cols nowadays available which have high variations in terms
of appearance and have no standardized scale like Hounsfield
for CT. In the literature, various recent works targeted spine
labeling in specific MR sequences, e.g. on T1w [1], T2w [2],
[3], Dixon protocol [4] or SPIR [5] data. However, all these
methods are specific to a certain protocol. Thus, approaches
which are able to localize the spinal parts without retraining
for the different imaging parameters are of high interest. Loo-
tus et al. [6] applied Deformable Part Models using the HOG
descriptor combined with a graphical model in order to local-
ize vertebrae in a set of T2w MRI scans. The authors claim
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that their method works without retraining also on CT data,
although no extensive evaluation is provided. In a more recent
work [7], they introduce a normalization based on the verte-
bral intensities, which makes their algorithm more robust to
parameter changes and different vendors in T2w MRI scans.
Zuki¢ et al. [8] introduced an automated detection and seg-
mentation framework for vertebrae using a boosted cascade
of simple features for detection and the watershed method for
segmentation. Their method is able to handle T1w, TIRM and
T2w MRI data at once, although the extension to other se-
quence types requires a retraining of their detectors. Cai et al.
[9] address the problem of labeling and segmenting the spine
in a modality independent way. Restricted Boltzmann ma-
chines are used for landmark detection, followed by a global
spine model matching algorithm. Finally, vertebrae are regis-
tered and segmented via local models. Their framework was
evaluated on MR and CT data and is applicable without re-
training to different modalities. However, it is much more
complex than our proposed method.

Contribution. We present a novel semi-automatic
pipeline for labeling of the spinal column, which can process
3D MR scans with a high intensity variability, like T1w and
T2w scans, acquired on different scanners with varying scan
parameters. We propose a learning-based system, where we
train ETMs [10] for reducing the intensity scale in the clinical
data. We build general models, which normalize data across
different MR protocols. Thus, no separate models for differ-
ent acquisition setups are required. Moreover, our method is
applicable to sequences and protocols which are not covered
by the training set. When labeling an unseen scan, the learned
models are applied and intervertebral disc (IVD) centers are
localized with an adaptive approach in the normalized data.

2. METHODS AND MATERIALS

The following section introduces ETMs in general, our pro-
posed application within the scope of spine labeling and the
suggested refinement scheme.

2.1. ETMs in General

Zambal et al. [10] introduced 2D ETMs for segmentation
from dense landmarks at object boundaries. They propose
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(a) Overview of the training of ETMs for data normalization: From an annotated set of MR data, corresponding landmarks are extracted and
a shape model is built. Training textures are extracted and the texture transformations are then optimized iteratively [10].
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(b) Basic steps when labeling an MR scan: Based on the initial position and label provided by a user, the corresponding model is placed in
the scan and matched. On the normalized scan, the final center d is obtained with an adaptive refinement method.

Fig. 1: System overview describing the training of ETMs and the labeling of an unseen MR scan.

a novel texture model, that extends AAMs with a texture nor-
malization approach. This enables the usage of the model in
a modality independent way. It is built using m training tex-
tures 7T}, resampled by n texels and quantized to r; source
gray levels. The task is to find optimal mappings f, for every
training texture 7T}, which maps the r; input values to a gray
scale with only a few (s) target values. The mappings are
found with iterative optimization of two entropy-based objec-
tives: each texel’s source gray value should be mapped to a
certain target value. Thus, the uncertainty of all mappings is
minimized, which is described by the model entropy H™°4¢!,
On the other hand, a compensation term prevents degenera-
tion of mappings fx and hence drives the mapped textures
towards maximum information content. This is described by
the image entropy H'®.

The model is matched to an unseen image by iteratively
changing its shape parameters and texture mapping. Bayesian
reasoning is used to assess the matching quality. It is based
on the likelihood of the normalization result of the unseen
texture given a particular shape and on the shape prior. The
obtained mapping is then applied, which results in the desired
intensity-reduced scan with only s target gray levels.

In summary, H™°%! ensures, that the same tissues are
normalized to the same target level. More than that, the im-
age entropy term H®** guarantees that the contrast between
different tissues is preserved. These are important and pow-
erful characteristics, which enable us to apply such a model
without retraining to images, that express similar intra-tissue
homogeneity and inter-tissue contrast to those captured by the
model.

2.2. ETMs for Spine Labeling

We extend the ETMs to 3D and propose to build local mod-
els from sparse landmarks from a mixed set of Tlw and
T2w MR volumes (see Fig. 1la). We build three-disc-
models M; around a middle disc d; with anatomical label
A = {T12/L1,...,L4/L5}, including also its adjacent
upper disc d;_1 and lower disc d; . This has been already
successfully applied in the scope of spine labeling in the lit-
erature [11]. Around each IVD center, we include sampled
positions along the surface of a cylinder, which approximates
the size of the IVD. Furthermore, we add the two vertebral
body centers between d;_; and d;;1 and spinal canal land-
marks, which correspond to the IVD and vertebra centers.

2.3. Labeling of an Unseen Volume Dataset

Our semi-automatic method requires minimal input from a
user when labeling an unseen scan: an initial click position p
in the volume inside an IVD or vertebra and its corresponding
anatomical label )\; (see Fig. 1b).

ETM matching. An instance of the learned model M,
which corresponds to the user-assigned anatomical label \;
is placed at position p and matched accordingly. As a result,
the normalized scan is retrieved, as well as candidate posi-
tions for the landmarks, e.g. the middle disc d, upper disc
d)_,, lower disc d, 41 and vertebrae centers. We then apply
a refinement step for the candidate disc center position d,.

Adaptive Disc Center Position Refinement. We span a
bounding box R around the model-matched disc position d},



which defines our region of interest for the refinement (see
Fig. 2). The size of R is based on the ground truth, from
which we calculate the average dimension of discs in sagittal,
axial and coronal direction. For every voxel inside R we de-
cide if it belongs to the disc or not with an adaptive method
inspired by Haar-like features [12]. We construct a filter with
three regions: upper region R, middle region R s and lower
region R ;. The regions are then placed in the following way:
R is placed at the current position p’ in R. Ry and Ry,
are displaced based on the IVD orientation vector n and the
average disc thickness  estimated from the ground truth. The
vector 1 is calculated based on the model-matched landmark
positions. For every region Ry, Ry and Ry, the intensity
mode is calculated: my, , My and my . We consider the
voxel as disc candidate if:

M(z,y,z) = ey

1 ifmy #mM/\ﬁ”LL #mM
0 otherwise
From the obtained binary IVD mask, we calculate the cen-
troid as the refined center position d .

Propagation. The labeling is performed in an iterative
manner. From the model matched around the initial position
p we also obtain candidate positions for the upper and lower
IVD, ie. d}_, and d; 41- We continue the search first to-
wards L4/L5 and then upwards to 712/ L1 and repeat model
matching, adaptive refinement and retrieval of the next IVD
positions d}_; resp. d; ;.
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Fig. 2: Illustration of our proposed refinement method. Filter
regions Ry, Ras and Ry, are shown in green and the search
region R in orange. Displacement vectors are shown in red
and the IVD orientation vectors in blue.

3. EVALUATION AND RESULTS

The following section provides an elaborate evaluation of our
novel pipeline on lumbar MR volumes.

3.1. Data and Experimental Setup

Four datasets S; of sagittal acquired lumbar MR scans from
five different scanners are used for evaluation. The voxel sizes
are highly anisotropic, with an in-plane resolution ranging

from 0.59 mm? to 1.25 mm? and slice thickness from 2 to
6 mm. We reconstruct 62 volumes from the scans and con-
sider seven IVDs from 7'11/T'12 to L5/S1, which results in
434 IVDs in total.

Dataset S;: Our dataset with 13 T1w MR scans.

Dataset So: Our dataset with 10 T2w MR scans.

Dataset S3: Challenge Dataset [3], consisting of T2w
MR scans from 15 different subjects.

Dataset S4: Dixon protocol data [4]. Scans from eight
subjects, where we use three different image channels:
opposed-phase, fat and water saturated. We treat every chan-
nel separately, hence we obtain 24 volumes for testing.

In our datasets (S, S2), magnetic field inhomogeneities
are present and half of the scans exhibit at least one of the fol-
lowing pathologies: fractures, disc herniation, scoliosis and
lumbar hyperlordosis.

We evaluated our method on three setups (see Table 1) on
an Intel Xeon E5 PC. We split S; and Ss into two subsets and
perform two-fold-cross validation. Setup #2 and #3 demon-
strate the generality of our method by evaluation on unseen
MR sequences, which were not included in the training set.

Training Testing

#1 | S11 So1 | Si2 Sop

S12 S22 | Sip Sa
]S S |S S

#3 | S3 S Sy Ss

Table 1: Evaluation setups

3.2. ETM Model Training

We trained models M, for the middle IVDs from 712/ L1 to
L4/L5, which introduces an overlap of models and increases
robustness. When choosing parameters for ETMs, the goal is
to find rather homogeneous intensity mappings for IVDs, ver-
tebrae and the spinal cord, without losing anatomical informa-
tion. Best mapping results were obtained with = 110 source
and s = 3 target levels using leave-one-out cross-validation
on our training data. This provides a good initial quantiza-
tion, where we do not miss relevant intensity changes but also
remove image noise. The time for model training depends on
the number of training textures. We report 4.6 = 1.5 min for
setup #1 and #3 and 13 £ 2.3 min for setup #2 on average.

It is important to note, that we do not obtain the same
mapping for one tissue in all sequences, e.g. for the mapping
of disc intensities. The tissues are in a different range, but still
homogeneous mappings are obtained (see Fig. 3).

3.3. Labeling Results

We start a full semi-automatic data normalization and label-
ing run inside every IVD. Seeds are placed within 10 mm to
the ground truth center, which allows the models to converge
towards the disc centers while matching. We provide the fol-
lowing measures:
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(a) Tlw (c) Dixon opp-phase
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Fig. 3: Various mid-sagittal slices of MR scans from our data
collection S (top row) and corresponding sample normaliza-
tion results (bottom row).

IVD localization performance: p. explains, how many
detected positions d} lie within ¢ mm to the annotated IVD
center d;, with € € {2,4,6,10}.

IVD center accuracy: The Euclidean distance from the
localized position d; to the ground truth d; describes the
mean position error € and standard deviation sd.

Highest IVD center position accuracy was achieved with
setup #2 (see Fig. 4a), where we reach a mean error of
3.82 £ 2.47 mm with p;g = 97.64% (see Table 2). A high
detection rate is also achieved on setup #3 with p1g = 93.91%
and an avgerage distance of 4.45 + 3.44 mm from the ground
truth. Setup #2 and #3 were trained on only a subset of all
available imaging protocols in S. Thus we show, that our
generalized approach is applicable to acquisition protocols,
which were not included in the training, but exhibit similar
contrast characteristics as captured by our learned ETMs (see
Section 2.1). This is reflected in the results on S4. In gen-
eral, we observe higher p. for T2w scans than for T1w scans,
because of a better tissue contrast. Localization performance
is lower for setup #1 due to pathologies and imaging arti-
facts. On disc-level, we obtain the best result for L2/L3 with
2.63 + 1.52 mm (setup #2), because no severe abnormalities
are present in this region. Highest error rates were observed
for setup #1. Due to pathologies like herniation and lumbar
hyperlordosis, we reach a low accuracy for L5/51 (9.53 +
3.67 mm) as well as for 711/7'12 (5.64 + 3.24 mm), where
magnetic field inhomogeneities are present (see Fig. 4b).

Overall processing time for an unseen MR scan is 12.6 £
3.7 sec, which results in 1.8 & 0.5 sec per IVD.

4. DISCUSSION AND CONCLUSION

We presented a novel, learning-based pipeline for semi-
automatic labeling of lumbar MR volumes. Our main contri-

P2 P4 Pe P1o e+ sd

el | (%] | (%] | [%] [mm]
#1 | 14.29 | 40.00 | 60.71 | 84.39 | 5.78 & 3.76
Sy || 13.88 | 37.96 | 57.14 | 77.76 | 6.27 £4.18
Sy || 14.69 | 42.04 | 64.29 | 91.02 | 5.29 £3.22
#2 || 22.51 | 64.53 | 84.99 | 97.64 | 3.82 +2.47
Ss || 27.76 | 64.49 | 80.14 | 9497 | 4.04 £ 3.14
Sy || 19.21 | 64.56 | 88.04 | 99.32 | 3.68 £ 1.94
#3 || 21.32 | 59.00 | 78.46 | 92.06 | 4.45 + 3.44
S 6.31 | 4045 | 60.11 | 80.52 | 6.24 £4.12
Sy || 11.84 | 43.06 | 71.63 | 94.49 | 4.93 £ 2.67
Sy || 32.14 | 74.15 | 89.71 | 96.34 | 3.44 £2.99

Table 2: Overall performance measures per evaluated setup
(bold) and corresponding dataset-specific results.

(b) Pathological scan (S1)

(a) Successful case (S3)

Fig. 4: Labeling results shown on two images: Our detected
positions (red) and ground truth centers (yellow).

bution lies in the generality of our method: We can process
various imaging protocols and apply our approach also to
unseen protocols, which were not covered by our training
set. Furthermore, our method is significantly faster to train
than recent deep learning approaches [9]. We successfully
localized 84.99 % IVDs within 6 mm and 97.64 % within
10 mm to the ground truth center, which is competitive to
localization measures of state-of-the-art methods. Zuki¢ et
al. [8] report a false negative rate of 7.1 % for automatic
vertebrae detection. This method is closest to ours in terms
of the variability of MR protocols (T1w, T2w, TIRM). Chen
et al. [4] reach a position error of 1.3 4= 0.6 mm for all IVDs
on Dixon protocol data, whereby all image channels are used
for training and testing. We report 3.68 + 1.94 mm (setup
#2) and 3.44 + 2.99 mm (setup #3), whereby we did not
include Dixon data in the training. On an extended set of the
Challenge Dataset S3, they achieve position errors between
1.8 £ 1.1 mm and 2.8 + 6.5 mm for different cross-validation
setups. We provided IVD center positions with a mean dis-
tance of 4.04 + 3.14 mm to the expert-annotated ground
truth position (p19 = 94.97%). Overall, a higher deviation
is present for L5/S1 and T11/T12, which we believe to
decrease with a more enhanced refinement method. We plan
to extend our framework into a fully automatic system and
evaluate it also on cervical and thoracic scans.
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