
A Sensor Fusion Approach to Extending Range of Environment Mapping Devices

Andrew Ciambrone, Denis Gračanin

Virginia Tech, Blacksburg, VA, USA

Krešimir Matković

VRVis Research Center, Vienna, Austria

Abstract

Currently available commercial spatial mapping devices mostly use infrared camera to obtain a depth map which is effective only
for short to medium distances (3-4 meters). However, that range can be extended by using existing environment mapping devices
and techniques and a combination of a camera, Inertial Measurement Unit, and Light Detection and Ranging devices supported by
sensor fusion and computer vision techniques. The proposed approach consists of three steps. The first step is data collection and
data fusion using embedded hardware; the second step is data processing (segmentation) and the third step is creating a geometry
mesh of the environment. The developed system was evaluated by measuring the room dimension and objects within the room.
This low cost system can expand the mapping range of the existing mixed reality devices such as Microsoft HoloLens device.

Keywords: mixed reality, sensor fusion, environment mapping, image processing, computer vision

1. Introduction

Spatial mapping or environment mapping is the process of
exploring a real world environment and creating a digital repre-
sentation of it. This process is used in various application do-
mains, including mixed reality (MR). Current MR commercial
devices, such as Microsoft HoloLens device, include support
for environment mapping. However, the mapping is effective
for short to medium ranges (3-4 meters). Most built environ-
ments contain large spaces that are not suitable for these de-
vices thus limiting the applicability. The described approach
focuses on augmenting the environment mapping capabilities
of the current MR devices.

Real time environment mapping is an important component
of many systems and is a well-researched concept. The real
time approaches map the environment on the fly, usually us-
ing cloud point data. They are limited by the amount of time
the system has to process the data (the amount of time it takes
for the next frame of information to come in). Due to the lim-
itations of a MR system, processing high density point cloud
is difficult due to the limitations of portable Light Detection
and Ranging (LIDAR) technologies and computer vision tech-
niques. Creating a dense point cloud is often achieved by using
expensive image processing techniques or LIDAR systems.

The proposed approach extends the existing environment
mapping devices and techniques to map larger architectural en-
vironments using a combination of a camera, Inertial Measure-
ment Unit (IMU), and LIDAR devices supported by sensor fu-
sion and computer vision. The developed system was evaluated
on how accurately it can estimate the dimensions of the space it
is located in. The system was also compared to an existing high
density LIDAR system.

2. Related Work

Mapping an environment can be done in three different ways,
geometrically, radiometrically and semantically [1]. The geo-
metric mapping spatially maps the real world, the radiometric
mapping maps the color of the world, and the semantic map-
ping creates an understanding of the environment. Geometric
mapping usually uses sensors such as LIDAR or range finder
cameras while radiometric mapping typically uses cameras but
could also use thermal imaging. Semantic mapping tries to cre-
ate understanding in the scene such as object detection or under-
standing where objects are in reference to each other. Recently,
the use of deep learning [1] has gained attention.

For cloud point collection there are two main types of meth-
ods, passive and active methods. Passive methods rely on rea-
sonable lighting and typically use imagery for their methods of
point collection. Active methods manipulate the scene to gather
more information. Microsoft HoloLens and Kinect are good ex-
amples of mapping devices that use active methods to determine
distances by using an infrared laser. An example of a passive
method would be the “structure from motion” technique [1].

Feature extraction is the idea of locating point of interest
from an image. Examples of the features in an 2D image are:
pixel properties, textures, and shapes within an image. Tex-
ture features are the spatial placement of the intensity values in
an image. For example, a checkerboard would give a different
texture compared to a spherical contour. Looking at the tex-
ture features of an image is used to determine regions of an im-
age [1]. Shape features can be detected by using contour filters
such as the Canny, Sobel, Roberts, and Prewitt operators [1].

The simultaneous localization and mapping (SLAM) prob-
lem is one of incrementally building a consistent map of the en-

Preprint submitted to SCCG 2017 May 8, 2017

vironment and simultaneously determining its location within
the map [2]. Work done in this area is closely related to the
work done for the MR environment mapping.

Sensor fusion [3, 4] uses intelligent integration of data de-
rived from a collection of disparate sensor so that the resulting
information provide more accurate information or information
that cannot be derived from individual sensors.

Image segmentation is the process of dividing a image into
discrete parts [5]. The most common alfgorithms include clus-
tering, edge detection, and machine learning techniques such
as neural networks. Superpixel segmentation [6] is a method
of image segmentation. Seeded Region Growing [7] is a im-
age segmentation method that is quite often used in computer
vision. The algorithm starts by picking an set of N seeds. Then
for each iteration each of the seeds gain one additional pixel to
its region. This is done by looking at the pixels that border the
regions. The pixel that is added to the region is determined by
the least difference from the region. If a pixel is approached by
two regions then the algorithm considers that to be a boundary
pixel [8]. The success of the algorithm relies on the selection of
initial pixel seeds, e.g., the converging squares algorithm [9].

3. Problem Description

MR devices tend to be lightweight mobile devices. Their
processing power, memory and other resources are constrained.
Limited memory and limited CPU power mean that decisions
must be made on how much data can be collected. Collecting
too much data could introduce delay causing a latency between
what the user sees and what the systems outputs. One solution
to this problem would be to collect the sensor data on the de-
vice and process it on a more powerful machine by sending it
over the network. However, this would add a bottleneck to the
system due to network constraints.

Mapping large architectural (indoor) spaces is challenging
due to a limited range of currently available MR devices. It can
take some time for the user to navigate the whole area and com-
plete space mapping. While user interactions do take place in
the immediate surrounding of the user, having some informa-
tion of the more distant parts of the environment (without the
need for the user to go there) could provide better context for
user interactions. For example, mapping objects further away

Figure 1: An outline of the system workflow.

(such as walls and high ceilings) enables construction of the
model of the surrounding architectural space.

That can be achieved by augmenting the current MR de-
vices with additional longer-range sensor technologies. How-
ever, these additions must be light and mobile and safe for the
user to use. Due to these constraints main difficult design deci-
sions must be made to produce fast but not necessarily highly
accurate results. However, since this those results describe ar-
eas of space more distant form the user, even less accurate re-
sults are sufficient. When the user moves closer, the near-range
mapping hardware is used to improve the accuracy.

4. Proposed Approach

Figure 1 shows the overall approach. The main processing
loop is based on the camera input. Each camera frame is anno-
tated by LIDAR and IMU data within a specified time distance
from the frame capture time. The fused data is used to deter-
mine region in space and construct the surrounding geometry.

Overall, there are three main components. The first part
focuses on data collection and data fusion. The second part
processes the collected data and finally, the third component
formulates and outputs a 3D mesh.

There are several types of data to be collected and processed
by this system: images, range measurements, and the devices
specific acceleration, gyro and magnetic data. This is achieved
by using a combination of a camera, a LIDAR device, and an
IMU device. The quality of the data and the rate of collection
depends on the quality of the device. While having more data
samples would create a better result, the system must fit within
the constraints of a wearable device. Most LIDAR devices are
big and bulky and are not portable. The most promising type
of LIDAR would be a singular range finder device such as the
Garmin LIDAR Lite v3.

Once the data is collected and bundled together based on
the time it was captured, the system can then start processing
the data. The first step is to segment the image into meaningful
chunks. The purpose of the segmentation is to group pixels of
the image into sections so that when the LIDAR does hit that
portion of the image we can interpolate entire regions instead
of just points of the image. There are various strategies for seg-
menting an image, such as edge detection, convolutional neural
networks, or region-growing.

Given the segmented image the next step in the process-
ing phase is to create the actual mesh from the images. Since
the image is segmented into parts, the system assumes that the
segments lie the same plane of orientation. To determine the re-
gion’s orientation at least three LIDAR points must be captured
on that particular region.

With a region’s orientation it is possible to determine the
size and the bounds of the region in the real world. Calculating
the bounds of the region in the world space can be done by find-
ing the intersection between a ray that coming from the camera
and the calculated plane in camera space.

2

4.1. Data Collection and Processing

The following data types of data are being collected and
used: the specific force or acceleration of the system, the angu-
lar rate, the magnetic field, image data, and distance data. To
reduce the natural error of the IMU, sensor fusion is performed
on the data. Since time performance is essential, a simplified
version of Kalman filter, called RTQF, from the RTIMULib li-
brary is used [10]. The sampling rate for these components are
80 samples / second for the IMU sensor and 100 samples / sec-
ond for the LIDAR sensor. The camera is capable of capturing
up to 30 frames per second. However, due to the time it takes to
process each frame the effective camera frame rate is reduced
to approximately 5-6 frames per second. However, that is suffi-
cient to map the environment given the user’s speed.

We first process the data collected from the sensors before
converting it into geometry meshes. This is done in three main
steps, image segmentation, image annotation, and plane cre-
ation. The success of this system relies heavily on the segmen-
tation image. A segmentation algorithm takes in image and par-
titions it into discrete parts. The main goal of any image seg-
mentation is to simplify the image by grouping pixels together
by corresponding surfaces or objects.

In this system the goals of the segmentation is to separate
the image into surfaces and to get the bounds of the region. The
system needs a segmentation algorithm that maintains consis-
tency of the generated regions, be as close to real time as possi-
ble, and add a bias to creating larger regions. In indoor spaces
there are a lot of variations in the image due to surface textures
and lighting differences. Overhead lights and windows can cre-
ate areas of intense light differences. Consequently, creating a
good segmentation is difficult. To overcome these issues, im-
ages must be preprocessed before segmentation.

One major flaw with many image segmentation approaches
is that they are often prone to noise in the image so steps must
be taken to reduce the noise before the segmentation can be
ran on the image. This can be done by blurring or smoothing
the image. Blurring an image reduces the amount of noise and
details in an image. Figure 2 left shows a segmentation without
filtering. The black regions are segments below the minimum
filter size. Figure 2 right shows a segmentation with filtering.

A filtered image is preferred compared to the unfiltered im-
age because the noise and tiny details in a image prevent seg-
menting surfaces into larger segments. For example, when seg-
menting a brick wall the system would perform better if it cre-
ated only one segment for the wall instead of having a segment

Figure 2: Segmentation without (left) and with filtering (right).

for each brick. However, image blurring does have a cost. Blur-
ring processes each pixel in an image which does add a com-
putation required for each frame. It is important to realize the
amount of blurring that takes place. Too much blurring and the
image will lose critical details such as the edges between sur-
faces. Popular methods of image smoothing include Gaussian,
median, and bilateral.

The median filter is used because it preserves the edges bet-
ter then the Gaussian filter while at the same time removing
noise in it. Although for this application it was found that while
the bilateral filter does perform better than the median filter in
retaining edges, it also takes much longer to process compared
to the median filter. RGB is the typical format that frames from
a camera come in however a color translation to a different color
space such as the L∗A∗B is rather simple. In this case the color
space transformation is done using the OpenCV library.

4.2. Segmentation Algorithm
While the filtering and changing the color space does help

with the differential lighting, it still holds a major influence in
the image segmentation choice. Many of the image segmenta-
tion processes use a process called global thresholding. That
works well for images that are consistent in lighting such as
microscopic images but does not work well in an indoor space
with overhead lighting. Therefore, the segmentation algorithm
has to use adaptive threshold or some other method to compen-
sate for the light differences.

Finally, the amount of time needed for the segmentation was
a major decision point in choosing a optimal segmentation al-
gorithm. Currently, a great deal of research is ongoing in using
convolutional neural network (CNN) to segment an image. The
selected image segmentation algorithm (Algorithm 1) is a sim-
plified unseeded region growing algorithm.

Algorithm 1 Image Segmentation
procedure Region Growing(Img,MinRegionS ize)

Regions← ∅
RegionMap← [][] (all zeros)
RegionCounter = 1
Seeds← ∅
CurrentRegion← NULL
while Pixels left to process do

if Seeds.length = 0 then
if CurrentRegion != NULL then

Regions← Regions ∪ {CurrentRegion}
newSeed ∈ RegionMap , 0
CurrentSeeds← newSeed
CurrentRegion← New Region based on newSeed

repeat
CurrentSeed← seed ∈ Seeds
for all Neighbor ∈ 8 or 4 neighbor near CurrentSeed do

if Distance(CurrentSeed.Color, Neighbor.Color) < Threshold then
CurrentSeeds← CurrentSeeds ∪ {Neighbor}
CurrentRegion← CurrentRegion ∪ {Neighbor}

until Seeds.length = 0
Return Region Merging(Regions,MinRegionS ize)

The region growing was selected because it creates consis-
tent segments and follows the guidelines of the parameters pass
such as minimum segment size. Another reason why region
growing was selected over other methods was because unlike
many of image segmentation algorithms region growing is a lo-
cal method. It is only concerned with certain portions of the

3

Algorithm 2 Merge Regions
procedure RegionMerging(Regions, MinRegionS ize)

for all Region ∈ Regions do
if Region.size < MinRegionS ize then

if All Neighboring Regions are the same then
NRegion = NRegion ∪ Region

for all NeighRegion do
if Distance(Region.AvgColor, NRegion.AvgColor) < Threshold then

Region = Region ∪ NRegion
Return Regions

image during the segmentation which works well with the dif-
ferences in lighting typically found in architectural spaces.

The region growing algorithm includes seed selection, re-
gion growing and mesh creation. Seed selection can be crucial
to seeded region growing algorithms because those algorithms
typically only have a number of regions they can grow. The al-
gorithm above is considered unseeded because no initial seeds
are set through the parameters. There is also no real hard limit
to the number of regions except for the number of pixels the
image. Since there is no limit to the number of seeds, the se-
lection of initial seeds for a region has little impact and can be
negated by region merging. However, a heuristic that uses a
peaks method in [7] is a good method of seed selection. This
method looks for the points of highest variation in the image.

After an initial seed is selected the algorithm the region
growing portion begins. Popular methods for defining what a
neighbor are the 8-connected or the 4-connected. In this system
it was found that the 4-connected method has a slight advantage
in creating an accurate segmentation. However, the advantage
is not enough to justify the additional iterations the 4-connected
neighborhood does create. If the color difference or distance be-
tween current region seed and the pixel neighbor isn’t too large,
the pixel neighbor will be added to the current region being built
and added to the list of pixels to process. This process contin-
ues until there are no more seeds left. If a region runs out of
seeds to process and there are still pixels left in the image left
unlabeled, then another region is created on an unlabeled pixel.

Once every pixel in the image has been labeled with a re-
gion, the region merging portion of the algorithm begins. Re-
gion merging is used because the image contains artifacts from
the camera sensor that were not filtered out by the median fil-
ter. For every region that is smaller then the minimum desired
size, the region looks at its neighboring regions and determines
if it can merge with one of those. There are two conditions to
decide if a region will be merged with another. The first condi-
tion is if the difference between the average color of the region
and its neighboring region is within the threshold. This condi-
tion prevents a bias from occurring with the order of the pixel
processing. The second condition is when another region en-
compasses a region they are merged. This means that small
regions that are surrounded by the same larger region will be
merged with that region.

The properties of the created segments are.

1. All the pixels in the frame must belong to a region.
2. The points in the pixel must be connected at some point

meaning no two isolated groups of pixels can be consid-
ered parts of the same region.

3. All regions are disjoint. There are no overlaps.

While it would be best if all of the data points are used,
only those data points around the time of frame capture can be
used to create independent planes. This constraint verifies that
the initial position of the LIDAR data points were collected are
around the same position that the frame was collected. The time
range value is determined based on the assumption that the user
does not move faster than one meter / second. With the frame
segmented and the relevant data selected, the next step is to find
where on the frame the LIDAR points lie. This is achieved by
placing the frame into camera space.

Since there is little depth data, the system needs to extrapo-
late the depth’s of other parts of the environment. This is done
by assuming that the regions captured during the segmentation
process lie on the same orientation plane. With the orientation
of a region its bounds and size can be determined. Which al-
lows the system to extrapolate additional depth points of the
region. To achieve this the LIDAR points need to be grouped
by the region which they fall into.

For each region with three or more points, a check is done
to verify if the points are well suited to create the plane. If the
three points are overlapping or are co-linear, creating a plane is
not possible. In cases where there are more then three points
a search must be performed that chooses the three points that
form the largest possible triangle. By creating the largest possi-
ble triangle the amount of error in the plane creation and bound-
ary extrapolation is reduced.

Once the system has determined that the region does contain
three points that are optimal for creating a plane, the system
can then proceed to calculating the position of the bounds of
the region in camera space. The current implementation only
calculates for eight boundary points. However, this could be
easily extended to more points. In order to correctly determine
the boundary point locations we need to also calculate a plane
for the region. All the boundary points and LIDAR points are
saved and used are used to represent the mesh of that region.

4.3. Implementation

Because the target MR devices are lightweight, the devel-
oped system also has to be lightweight. We use Raspberry PI
3, Pi camera, the Garmin LIDAR Lite 3 and the IMU based on
MPU9250. The total cost of the system is approximately $200.
Figure 3 shows the develop system (bottom right) deployed dur-
ing the experiment.

5. Evaluation

The described system was evaluated by its ability to predict
environment dimensions from the points in the created mesh
and by its ability to estimate the dimensions of an object in the
environment.

When evaluating the system for its ability to detect the di-
mensions of the room, the system’s data was compared against
the data from the LIDAR puck and against a ground truth which
was determined from measurements taken from both a laser

4

Figure 3: Object dimension evaluation setup.

tape measure and a measuring tape. The evaluation was con-
ducted in a room where Microsoft HoloLens device would be
unable to detect the walls if placed in the center of the room due
to the size of the room. To provide a comparison between mod-
ern state of the art versus our implementation the system was
compared against the Velodyne LIDAR Puck (VPL-16). Both
the implemented system and the LIDAR Puck were placed in
the center of the room at approximately the same height. The
implemented system was placed on top of a tripod where it was
rotated around the room completing a full rotation capturing
different parts of the room.

The results from the Room Dimension evaluation can be
found in Table 1. The dimensions of the room were calculated
by finding the maximum and minimum values points in each
of the spatial dimensions. However, due to the error in the gy-
roscope yaw value some of the extrapolated region boundary
points may had caused some of the data points to be erroneous.
To account for these erroneous data points a median value was
calculated at each of the directions where meshes were created.
Table 1 contains the calculated dimension of both data sets.

The percent error on the x-axis of the developed system for
all data points is 42.8% however when accounting for the er-
roneous points the percent error on the x-axis is 1.5%. For the
compared system the percent error on the x-axis is 26.5%. The
error in the compared system was high due to the windows in
the room. The percent error found on the y-axis of the devel-
oped system for all data points 30.1%. However when account-
ing for the erroneous points the percent error on the y-axis is
10.3%. For the compared system the percent error on the y-axis
is 0.2%. The percent error on the z-axis of the developed system
for all data points is 176.02% however when accounting for the
erroneous points the percent error on the z-axis is 35.5%. For
the compared system the percent error on the x-axis is 6.2%.

6. Discussion

Due to the error in the gyroscope’s yaw an absolute ori-
entation of the room was not going to accurately represent the
direction that the developed system was pointed at. An estimate

Table 1: Dimensions of the room.
Length Width Height

Metric x (cm) y (cm) z (cm)
Ground Truth 1097.28 871.22 273.05
LIDAR Puck 1388.11 873.75 289.98
System (All Points) 1567.01 1133.04 482.54
System (Median) 1080.80 960.72 176.02

of the system’s orientation was later applied to the data points
collected. Frames were captured at eight different orientations
evenly distributed on the z-axis. This estimate may have intro-
duced errors into the estimate of the room dimensions. Another
factor that introduced error on the z-axis was that no data was
collected of the floor and ceiling. That is evident in the high
error in approximation of the rooms height.

Another important observation to note is of the error on the
x-axis for the LIDAR puck. The LIDAR puck was calibrated
and measurements were taken multiple times following the di-
rection of the manufacturer (Figure 4). However, the error on
the x-axis remained. Figure 5 shows the corresponding data
captured by the developed system in each corner of the room
and the center areas of the walls.

An important part of environment mapping is accurately
representing the dimensions of objects in a room. In this part of
the evaluation the system ability to perform this task was eval-
uated. The dimensions of the object that the system was trying
to measure a white board hanging on a wall (Figure 3).

The distance and angle between the object and the system
affected the accuracy of the system’s estimate of the object’s
dimensions. In order to test the system’s ability to accurately
estimate the dimension of an object the system was placed fac-
ing that object at various distances and angles about the room.

Table 2 shows the changes in accuracy from the different
distances and angles taken around the room. Figure 6 shows

Figure 4: LIDAR data (top view) LIDAR data (perspective view).

Figure 5: System data (top view) System data (perspective view).

5

Table 2: Dimensions of the white board (in centimeters)
Metric Width Height Angle◦ Distance
Actual 169.22 117.48 N/A N/A
Reading 1 167.63 109.20 0 182.88
Reading 2 164.14 117.58 0 271.78
Reading 3 157.85 106.10 0 383.54
Reading 4 168.79 127.73 0 510.54
Reading 5 147.53 100.62 0 645.16
Reading 6 141.24 114.12 25 353.06
Reading 7 136.00 124.57 50 347.98
Reading 8 94.10 126.81 60 342.90
Reading 9 102.31 127.18 50 490.22

the percent error of the dimensions based on the distance and
angle of the implemented system.

There are a few things that cause the error in calculating
the error in an objects dimensions. The first is accuracy of the
segmentation. If the segmentation is too large or too small the
predicted boundaries of the object are going to be different then
what they truly are. The effect of the segmentation error has in-
creases as the distance increases because the further the system
is from the object the more spatial impact each pixel has.

However, the largest factor in the amount of error in the
calculation is the error in the gyroscope, particularly the value
of the yaw. Looking at Figure 6 bottom it is apparent that the
amount of error in the object’s width is much higher then the
error in the height. Conversely, looking at Figure 6 top when
the system is parallel to the white board, the error of the width
and height are roughly around the same area.

7. Conclusion

While the system based on the proposed approach has been
developed, implemented and tested, many improvements are
possible. Because of the limitations of the hardware and how
the system is being used, the results depend on the user of the
system. If the user does not provide a good amount of rotational
range then many of the LIDAR points may overlap or be co-
linear meaning planes can’t be constructed and meshes can not
be generated. The approach is limited to working with sparse
point clouds. Providing a visual feedback to the user in terms
of space coverage will help improve the cloud point quality and
enhance environment mapping.

References

[1] Weinmann, M.. Reconstruction and Analysis of 3D Scenes: From Irreg-
ularly Distributed 3D Points to Object Classes. Springer; 2016.

[2] Durrant-Whyte, H., Bailey, T.. Simultaneous localization and mapping:
Part I. IEEE Robotics Automation Magazine 2006;13(2):99–110.

[3] Das, S.. High-Level Data Fusion. Boston: Artech House; 2008.
[4] Kim, J.S., Gračanin, D., Quek, F.. Sensor-fusion walking-in-place

interaction technique using mobile devices. In: Proceedings of the 2012
IEEE Virtual Reality Conference (VR 2012). 2012, p. 39–42.

[5] Gonzalez, R.C., Woods, R.E.. Digital Image Processing. Upper Saddle
River, New Jersey 07458: Prentice Hall; second ed.; 2002.

Figure 6: Top: Percentage error of object dimension estimate as a function of
distance in centimeters. Bottom: Percentage error of object dimension estimate
as a function of angle in degrees.

[6] Ren, X., Malik, J.. Learning a classification model for segmentation. In:
Computer Vision, 2003. Proceedings. Ninth IEEE International Confer-
ence on. IEEE; 2003, p. 10–17.

[7] Adams, R., Bischof, L.. Seeded region growing. IEEE Transactions on
pattern analysis and machine intelligence 1994;16(6):641–647.

[8] Kamdi, S., Krishna, R.. Image segmentation and region growing al-
gorithm. International Journal of Computer Technology and Electronics
Engineering (IJCTEE) Volume 2012;2.

[9] O’Gorman, L., Sanderson, A.C.. The converging squares algo-
rithm: An efficient method for locating peaks in multidimensions. IEEE
Transactions on Pattern Analysis and Machine Intelligence 1984;PAMI-
6(3):280–288.

[10] Lindegaard, J.B.. RTIMULib - a versatile 9-dof IMU library for em-
bedded Linux systems. https://github.com/mrbichel/RTIMULib;
2016. [last accessed 27 March 2017].

6

