Interfaces to Scripting Languages in Visual
Analytics Applications

Johanna Schmidt*

*VRVis Zentrum fiir Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria
E-mail: johanna.schmidt@vrvis.at

Abstract—The need to use data visualization and visual anal-
ysis in various fields has led to the development of feature-
rich standalone applications such as Tableau and MS Power
BI. These applications provide ready-to-use functionality for
loading, analyzing and visualizing data, even for users who are
not familiar with programming and scripting. Meanwhile, data
scientists have to combine many different tools and techniques
in their daily work, since no standalone application can yet
cover the entire workflow. As a result, a rich landscape of
open source libraries is available today, covering various tasks
from data analysis to modeling and visualization. To combine
the best of two worlds, interfaces for scripting languages have
been integrated into standalone applications in recent years. We
analyzed which interfaces to six common scripting languages are
offered. The interfaces offer different levels of integration and
therefore support different steps of the data science workflow.
In this paper we investigated the integration levels of script
languages in standalone applications and divided them into four
groups. We used this classification to evaluate 13 standalone
visual analysis applications currently available on the market.
We then analyzed which groups of applications best support
which steps in the data science workflow. We found that a
tight integration of scripting languages can especially support
the explorative analysis and modeling phase of the data science
workflow. We also discuss our results in the light of visual analysis
research and give suggestions for future research directions.

Index Terms—visual analytics; visual analytics applications;
scripting language interfaces

I. INTRODUCTION

Data visualization and visual analysis have successfully en-
tered and influenced many different application areas [1]]. Visu-
alization and visual analysis techniques are today an essential
part of applications in geographic information processing [2],
in health care [3], in biology [4]], and in Industry 4.0 [5]]. The
success of visualization techniques, which are used in many
areas, has led to the emergence of open source libraries, but
also to feature-rich, standalone visual analysis applications.
These applications, such as Tableau, Microsoft Power BI and
Qlik View, provide easy access to data visualization and
visual data exploration for users unfamiliar with programming,
scripting, data wrangling and/or data visualization design. As
many of these applications are available, data visualization
and visual analysis are more widely known and used today
in many different domains and are used and applied by many
users and domain experts.

Parallel to research in the field of visualization and visual
analysis, data science has emerged as an important emerging

LEVIA’20: Leipzig Symposium on Visualization in Applications 2020

scientific field. Data science can roughly be defined as a
“concept to unify statistics, data analysis, machine learning
and their related methods” in order to “understand and analyze
actual phenomena with data” [6]. Data science comprises pure
statistical data analysis and the interdisciplinary integration of
techniques from mathematics, statistics, computer science and
information science [7]]. The increased interest in data science
has led to the development of new software applications
for data analysis, many of which are open source [_8]. The
use of open source technologies is a great advantage, since
data scientists can then rely on a large community that can
provide them with advice and support, as well as access to
a wide range of libraries and plugins. Especially for Python,
there are libraries for high-performance computing, numerical
calculations, regression modeling and visualization, which
are regularly extended and maintained [9]]. Not surprisingly,
studies show that the script programming languages Python
and R are very important for people working with data [[10].

Data science usually consists of several steps, ranging from
data preparation to analysis and visualization. For this reason
of a very interactive and undirected workflow [11]], there are
no applications yet that can cover the entire data science
workflow. Data scientists must therefore always use a list
of combinations of different tools, scripts and applications
to achieve their goals [12]. In a recent survey [13]], over 70
data science tools and applications that are commonly used by
data scientists were identified. These tools are often focused
on specific tasks, such as efficient data storage and access
(e.g., for big-data applications), data wrangling (i.e., mapping
data to another format), or automated analysis (e.g., machine
learning).

The distribution of the tasks to different tools offers a
great flexibility, which is not given by standalone data anal-
ysis systems. While standalone applications offer ready-to-
use functions for loading and visualizing data, the functions
for advanced data analysis are not updated as the open
source libraries grow. As a prime example we can consider
how clustering is implemented in different applications. The
standalone application Tableau provides integrated k-means
clustering functionality, and a k-means plugin is available for
Microsoft Power BI, but the popular Python library scikit-learn
already supports ten different clustering approaches [14].

To take advantage of this enormous amount of data analy-
sis capabilities and to better integrate into the data science
community, interfaces to scripting languages have been

integrated in different ways into standalone visual analysis
applications. As a result, standalone applications have achieved
varying degrees of integration with scripting languages. Inte-
gration can be on a rather loose level, where both components
are still considered individual applications, or it can be very
tight, where customer-specific interpreters are integrated into
the standalone application. In this paper we investigate the
implementations of different script language interfaces in
current standalone visual analysis applications. We present the
results of our survey, which classifies standalone applications
according to their degree of integration. Scripting and pro-
gramming have different meanings for data scientists in the
steps of their data science workflow. We therefore evaluate
which parts of the data science workflow are supported by
which degree of integration. Furthermore, we discuss the
results of our evaluation and summarize directions for future
research in visual analytics.

II. DEFINITIONS

In this section we will give a clear definition of the terms
used in this paper.

a) Standalone visual analytics applications: A stan-
dalone program can be defined as a software solution that
”does not load any external module, library function” and
is "not part of some bundled software” [[15]. As standalone
visual analytics applications we therefore consider software
applications that are targeted towards visual analytics (data
visualization + data analytics), do not require any additional
modules (e.g., programming languages) to run on a computer,
and do not require the users to have programming skills to
start and use them. For example, we consider Tableau as a
standalone visual analytics applications, but D is not.

b) Scripting languages: By definition, scripting lan-
guages are programming languages that are interpreted, which
means that they are translated into machine code when the
code is run, not beforehand [16]. Examples for scripting
languages typically used in data science are Python and R.

c) Interfaces to scripting languages: In computing, an
interface is defined as “a shared boundary where two or more
components can exchange information” [[17]. A key principle
of interfaces is to allow access only via precisely defined
entry points and to prohibit other access by default. Com-
ponents can reveal information about their interfaces, but not
about internal implementation details. We define interfaces to
scripting languages in standalone visual analysis applications
in the same way that applications and scripting languages
can exchange data, but do not know any further details. As
an interface to scripting languages we consider, for example,
a network interface that can be used to load data into a
standalone visual analysis application, but not a hard-coded
routine implemented in Python that has been integrated into a
standalone application.

Uhttps://d3js.org/

III. RELATED WORK

Several applications and tools have already been developed
to support a visual analytics process [18|]. To get a better
overview, research has been conducted on the features pro-
vided by standalone visual analytics applications currently on
the market. Zhang et al. [[19] and Behrisch et al. [20]] conducted
extensive studies on provided features and used this infor-
mation to classify commercial visual analytics applications.
Gartner, Inc., a global research and advisory firm, publishes
an analysis of analysis and business intelligence tools every
year [21]. In 2020, similar to the years before, Tableau and
Microsoft Power BI have been identified as the market leaders.

Visual analytics applications are of special interest for data
scientists. Kandel et al. [22] and Alspaugh et al. [[12] analyzed
the way data scientists work and which tools they use in
their workflows. The studies show that data scientists have
to rely on many different tools in all steps of their workflow.
Schmidt [8]] evaluated visualization tools according to featured
visualization techniques. The Chartmaker Directory [23| cre-
ates and regularly updates a catalog for the usage of charts
in different visualization tools. Holtz and Healy [24] present
recent examples for the usage of visualization in data science
projects online. The studies on the usage of visualization show
that advanced visualization techniques are not yet applied in
data science, which also confirms the so-called Interactive
Visualization Gap [25] in interactive data exploration.

Research on the integration of scripting languages in visual
analytics applications has been conducted from different di-
rections. Kehrer et al. [26] presented a generic model for the
integration of interactive visualization and statistical modeling.
They used R as a prime example to show how scripting can
be integrated into the standalone system Visplore, written in
C++. Fekete [27]] conducted a study on hardware and software
infrastructure for visualization. He identified three important
layers for interactive applications, namely visualization, ana-
Iytics, and data management, which are not well integrated yet
to support visual analytics applications. From a different point
of view, Anderson [28] looked at the integration of scripting in
entertainment applications and games engines. Miihlbacher et
al. [29] looked at strategies for involving users in long-running
algorithm processes. Research on the integration of scripting
languages in visual analytics applications has not yet been
done, and we see this paper as a starting point for future work
in this direction.

IV. SCRIPTING INTERFACES IN VISUAL ANALYTICS

Script languages are often used in data science projects.
Several standalone applications for visual analysis started to
develop interfaces to scripting languages or even to integrate
them tightly into their systems. In this way, these applications
can access the rich functionality offered by open source
scripting languages, and visual analysis applications can be
better embedded in data science workflows. In this study,
we provide an overview of the standalone visual analysis
applications we investigate and the approaches they use to
build bridges to scripting environments.

https://d3js.org/

We started our evaluation with the following standalone
visual analytics applications mentioned in the study by
Behrisch et al. [20]:

o Qlik Viewf]

« TIBCO Spotfiref’

o TablealE|

« SAS Visual Analytic{
« JMP Prdf

« SAP Lumird]

¢ Microsoft Power B]ﬂ

We additionally added the following tools mentioned in the
analysis by Gartner, Inc. [21]:

e Pyramid Analyticsﬂ
« Lookef™

« Infor Birs{]

« Sisensd?

o Yellowfinl

Since the VRVis recently launched a spin-off, we also added its
application as another commercial visual analytics application:

. Visplorelﬂ

In total, this sums up to 13 standalone visual analytics appli-
cations being evaluated in the study.

After finalizing the list of standalone visual analytics appli-
cations to be analyzed, we selected scripting languages which
we will use in the evaluation. From the multitude of options
available, we considered the following 6 scripting languages
which are, according to recent surveys [10]], relevant for data
scientists:

o Python
e« R

o Matlab
e Perl

o Julia
« Ruby

We did not consider web-based scripting languages like
JavaScript or TypeScript, since these scripting languages are
considered to work in a client-server environment, and the
standalone visual analytics applications are supposed to be run
on a single computer. The results of our study also confirmed
(see below) that these are the scripting languages application
developers mainly decided to built interfaces to.

Zhttps://www.qlik.com/
3https://www.tibco.com/
4https://www.tableau.com/
Shttps://Www.sas.com
Shttps://www.jmp.com
Thttps://www.sap.com/products/lumira.html
8https://powerbi.microsoft.com/
9https://www.pyramidanalytics.com/
10https://looker.com
https://www.infor.com
2https://www.sisense.com
Bhttps://www.yellowfinbi.com/!
https://visplore.com/

A. Available Interfaces

In a first step it was evaluated which interfaces are provided
by the selected visual analysis applications. The results are to
be seen in Table [Above all we found out that interfaces
to Python and R are supported by all applications. Also the
interfaces to Matlab are provided by at least five applications.
This shows that application developers consider Python, R,
and Matlab as the most important scripting languages for data
scientists. Tableau offers the greatest variety of interfaces to
different scripting languages, which confirms this application
as one of the driving forces of applications in data science. We
could not identify any application that offers direct interfaces
to Perl. Although Julia is considered an “up-and-coming
language” in data science [30]], it is not yet very well supported
by interfaces and APIs in the current standalone visual analysis
applications we evaluated.

TABLE I
AVAILABILITY OF INTERFACES TO SCRIPTING LANGUAGES. THIS TABLE
SHOWS WHICH STANDALONE VISUAL ANALYTICS APPLICATIONS PROVIDE
INTERFACE TO THE SCRIPTING LANGUAGES INCLUDED IN THE STUDY.

§
=5

Matla b
Per[
Ju]ia

Infor Birst

JMP Pro

Looker

Microsoft Power BI

Pyramid Analytics

Qlik View

SAP Lumira

SAS Visual Analytics

Sisense

Tableau

TIBCO Spotfire

000

Visplore

Q0000000000 0|0 Yu,
(<RI <N BRI B<RI<BI<BMI<BI<NI<BI<B{<NE

Yellowfin

B. Interfaces Classification

Based on the initial results, we started to investigate more
closely the way interfaces to scripting languages were de-
signed and implemented. Interfaces can allow a very tight or
rather loose integration of scripting languages into applica-
tions. We primarily identified three types of interfaces that
were implemented to script languages and therefore decided
to classify interface implementations in the following way:

https://www.qlik.com/
https://www.tibco.com/
https://www.tableau.com/
https://www.sas.com
https://www.jmp.com
https://www.sap.com/products/lumira.html
https://powerbi.microsoft.com/
https://www.pyramidanalytics.com/
https://looker.com
https://www.infor.com
https://www.sisense.com
https://www.yellowfinbi.com/
https://visplore.com/

TABLE 11
CLASSIFICATION OF INTERFACES TO SCRIPTING LANGUAGES. THIS TABLE SHOWS THE DISTRIBUTION OF INTERFACES AMONG THE THREE CLASSES
COMMUNICATIVE, SHARED, AND INTEGRATIVE.

COMMUNICATIVE SHARED INTEGRATIVE
[] P — Proe —
. o u . = * =

Infor Birst Python - R
JMP Pro Python - R - Matlab
Looker Python - R - Ruby
Microsoft Power BI Matlab Python - R
Pyramid Analytics Python - R
Qlik View Python - R
SAP Lumira Python - R
SAS Visual Analytics Python - R
Sisense Ruby Python - R
Tableau Matlab - Ruby Python - R - Julia
TIBCO Spotfire Matlab Python - R
Visplore Matlab - Python - R Python
Yellowfin Python - R

o COMMUNICATIVE The standalone visual analytics
application provides generic interfaces (e.g., network
connectors) to communicate with other tools. These
interfaces can be used by scripting languages to call
functions inside the standalone application (e.g., send/get
data), or by the applications to call functions in the
scripting environment.

_ u

e SHARED The standalone visual analytics
application enables users to run scripts directly
from within the application. The application uses

the scripting environment installed on the system.
o

_ u

o« INTEGRATIVE The standalone visual analytics
application enables users to run scripts directly from
within the application. The application is delivered
with a built-in interpreter for the scripting language.

(..]

- |

In the following we classified the previously discovered
interfaces (outlined in Table [[) into the three classes COM-
MUNICATIVE, SHARED, and INTEGRATIVE. The results are
shown in Table[[Il It can be seen that the COMMUNICATIVE
and SHARED approaches were mainly used when implement-
ing interfaces to scripting languages.

For the COMMUNICATIVE approach in many cases net-
work connector interfaces using Representational State Trans-
fer (REST) protocols were used (Looker, Microsoft Power PI,
SAP Lumira, SAS Visual Analytics). In other cases Remote
Procedure Calls (Qlik View) or similar network communica-
tion sockets (Tableau) have been implemented. Infor Birst and
Yellowfin can connect to Python and R over additional cloud
interfaces. The advantage of these network interfaces is that
they can also be accessed by other tools that are able to access
the provided protocol. COMMUNICATIVE interfaces are thus
not limited to scripting languages.

An example for a COMMUNICATIVE interface is given in
Figure[I] The standalone application and the scripting environ-
ment are shown as isolated containers which can communicate
via REST messages. With COMMUNICATIVE interfaces it is
clearly defined which information can be exchanged between
the standalone visual analytics application and the scripting
interfaces. COMMUNICATIVE interfaces can be accessed
either from inside the application, or within scripts in the

() MATLAB
POWER BI PRODUCTION
RESTfu SERVER
- f 1__. AP Workers

- aDWDfOUO"V N ee—— S
MATLAB
M J I
1/ Scrip! ") Analysis
— e :
‘M H 4\
A

Fig. 1. Microsoft and Power BI and Matlab. The figure illustrates a COM-
MUNICATIVE interface between the standalone application and the scripting
environment, which in this case was realized through REST messages.
Illustration taken from [31].

scripting environment. From the scripting interface point of
view, COMMUNICATE interfaces can be used to, for exam-
ple, send data to the application, call visualization methods,
and retrieve information like certain analysis results (e.g.,
outlier detection), or user interactions (e.g., selections). From
the application point of view, COMMUNICATIVE interfaces
can be used to extend the range of analytic functions (e.g.,
regression, modeling) by functions that are available in the
scripting language environment.

The SHARED approach is applied by six applications for
implementing interfaces. Customized connectors are provided
by the applications (7abPy by Tableau), or applications directly
access the scripting interfaces installed on the system (JMP
Pro, Microsoft Power BI, Sisense, Yellowfin). The SHARED
approach offers a lot of freedom in accessing the analytical
functions of scripting languages. With a SHARED approach
the standalone application makes use of the functions provided
by the scripting environment (e.g., libraries), but no bidirec-
tional communication channel is installed in this case. This
means that SHARED interfaces are meant to be used from
within the standalone application. Users can write and run
scripts directly in the standalone visual analytics application
and in this way can directly access the data currently loaded
in the application.

Four applications opted for the INTEGRATIVE approach.
In this case interpreters, often as additional modules, are
provided by the application developers. Again, users are able
to write and execute scripts directly in the standalone appli-
cation. To make INTEGRATIVE interfaces work, interpreters
or wrappers need to be kept up-to-date to provide the same
functionalities as when directly using scripting languages in
their native environment. This generates an additional over-
head, since libraries in the open source scripting libraries are
growing and changing quickly. It seems that most vendors
of standalone visual analysis applications decided to avoid
this additional effort. An example for an INTEGRATIVE
interface is given in Figure 2] It can be seen that the script was
created and is run in the standalone application user interface
environment.

Fig. 2. Visplore and Python. With an INTEGRATIVE interface it is possible
to run scripts (in this case Python) directly in the standalone application (in
this case Visplore). This allows the results of the script to be integrated and
used directly in the visual analysis.

V. RELATION TO DATA SCIENCE

It is obvious that different interface implementations offer
different functionality to users. Depending on the tasks to be
solved, the three interface classes have different advantages
and disadvantages. In this section we analyze which interface
classes can best support which tasks. For this purpose, we fo-
cus on the workflow usually followed by data scientists, since
these users are the main target group for combining standalone
visual analysis applications with scripting capabilities.

The workflow of data scientists can be summarized into
five high-level categories [22]. First, data workers usually
search for suitable datasets (Discover). This research is mostly
done online, and sometimes existing databases in a company
are queried.

Once available, the datasets need to be brought into a certain
format so that they can be used for the analysis (Wrangle).
The data wrangling pass usually involves file parsing and
manipulating the layout of the data. In some cases it is also
necessary to combine several data sources, which might even
have a heterogeneous structure. Data wrangling is considered
to be an important, but also very time consuming part of the
workflow.

After being available in the desired format, the data needs
to be analyzed in greater depth (Profile). This involves judging
the quality of the data, and estimating the suitability of the data
for the analysis. Since datasets very often contain severe flaws
(e.g., missing data, outliers, erroneous values), understanding
the structure of the data is considered an important task.
Visualization and visual analytics techniques are applied in
many cases in this step. After the data could be identified
as fulfilling all requirements, the datasets can be used as
training data to train prediction models (Model). Modeling also
involves evaluating the outcomes of the models.

All analysis results need to be reported to external people,
which might be colleagues, customers, or other stakeholders
(Report). Here usually dashboards or reports are used, where
visualization techniques are applied to visually communicate
the insights.

Searching for
DISCOVER suitable datasets
H TN
/V’ F.I .
WRANGLE lle parsing &
manipulation
Dat lorati
PROFILE a CT exploration
and judgement
MODEL Modellng &
evaluation
IL (Al C icqti
REPORT ommunication
of the results

Fig. 3. Tableau and Python. With a SHARED interface it is possible to run
scripts (in this case Python) directly in the standalone application (in this case
Tableau). This allows to directly include the results of the script in the visual
analysis. Illustration taken from [32].

The steps of the data science workflow are outlined in
Figure 3] and an analysis of the types of interfaces that support
each step is shown in table [[T]} The evaluation was done based
on our experience in working in data science projects. For our
evaluation we will omit the Discover step, since standalone
visual analytics applications and scripting languages are not
targeted towards finding suitable datasets. These applications
assume that suitable datasets already exist that need to be
analyzed further.

In the Wrangle phase, the data must be converted into a
desired format so that it can be used later for analysis and
modeling. Data wrangling is about parsing and processing data
files, which is often problematic and tedious when using third-
party data. In many cases, data files from different sources
must be combined and problems such as inconsistencies and
missing elements must be solved. Although some of the
evaluated applications offer ways to combine data sets (e.g.,
Tableau), data wrangling is not yet well supported. At this
stage, standalone visual analysis applications can provide an
overview of the data sources, helping data analysts understand
how to manipulate the data. In the Wrangle phase, COMMU-
NICATIVE interfaces are therefore a suitable tool to quickly
send data to an application where it can be visualized.

The Profile phase of the workflow summarizes the tasks
involved in exploratory data analysis to understand data
structure and data quality and to detect previously unknown
patterns and anomalies. This phase benefits greatly from visual

analysis solutions, which is why visualization techniques are
increasingly used in this phase. The Profile phase also includes
many circular processes in which data scientists must rethink
the actions they have taken and restart the analysis process
from different directions. In this phase all kinds of interfaces
(COMMUNICATIVE, COMMON and INTEGRATED) can
strongly support the analysis process. The most important
point for analysts here is that they are able to integrate analysis
results (e.g., statistical attributes), which can be calculated
using scripting languages, into the visual analysis. SHARED
interfaces have a certain advantage over the other two in this
respect, as they offer the possibility of using all functions
directly from the scripting environment and thus do not restrict
users in accessing the latest scripting libraries.

The Model phase can be started after the data sets have
been proven to be suitable for modeling. In this phase, a
direct connection to the scripting environment is important,
since analysts usually use the functionalities of open source
libraries for modeling. Modeling libraries also change very
quickly. In this case, the COMMUNICATIVE and SHARED
interfaces can greatly enhance the analytical capabilities of
standalone applications and are therefore very well suited to
support this phase in the workflow. Data scientists have to
evaluate the models they create and therefore benefit from
standalone applications that can interpret the models created
with scripting languages. INTEGRATED interfaces might be
too limited in their supported functionalities to successfully
support users in this step.

In the Report phase, scientists must summarize the results
and findings in reports that are read and interpreted by
colleagues, customers and other stakeholders. Reports can be
static (e.g., PDF documents), but also dynamic with interactive
views (e.g., dashboards). Standalone visual analysis applica-
tions, especially if they are focused on Business Intelligence
(BI), are very well suited for creating interactive reports.
In this step, data scientists usually rely less on dynamic
interfaces to scripting languages. Nevertheless, SHARED and
INTEGRATED interfaces can also be useful in this case, e.g.,
for calculating key performance indicators (KPIs), which are
then displayed in the report.

TABLE III
INTERFACE IN THE DATA SCIENCE WORKFLOW. INTERFACES TO
SCRIPTING LANGUAGES CAN SUPPORT THE DIFFERENT STEPS OF THE
DATA SCIENCE WORKFLOW [22]] IN DIFFERENT WAYS. X INDICATES THAT
THIS PARTICULAR INTERFACE TYPE IS VERY WELL SUITED TO SUPPORT
THE TASKS IN THIS WORKFLOW STEP.

Wrangle Profile Model Report
COMMUNICATIVE X X X
SHARED X X X
INTEGRATED X X

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a study in which we classified
the types of interfaces used in standalone visual analysis
applications in scripting languages.

A. Conclusion

We evaluated 13 applications currently on the market and
classified the interfaces to six scripting languages commonly
used by data scientists. We could identify three different types
of interfaces currently used by standalone application develop-
ers. The interfaces provide different levels of integration into
the standalone applications. Communication over network and
communication protocols like REST or RPC is preferred over
very close integration with interpreters or wrappers. These
protocols could also be useful for the integration in other
external environments. For example, data scientists may prefer
high- and low-level programming languages [33] like Java,
C++, or C# in their workflow, mainly due to performance
reasons. Network protocols in standalone applications are in
this case versatile and can also be addressed by these program-
ming languages. Open source environments and libraries are
changing very quickly, and it is therefore tedious and slow to
keep closely integrated wrappers and interpreters up-to-date.

The main idea behind the integration of scripting func-
tionalities in standalone visual analytics applications is to
better support the way data scientists work. Data scientists are
used to stitch together different scripts and tools for different
tasks, which is not supported by standalone applications alone.
Through interfaces to scripting languages, these applications
allow users to import and export data and analysis results
in a very handy way. We analyzed how the three types of
interfaces we identified integrate with the different steps in the
data science workflow. Here we could see that interfaces that
allow users to access a large variety of functionalities provided
by the scripting interfaces better support data scientists in their
highly interactive and undirected workflow. In our study we
concentrated on standalone visual analytics applications being
designed for data analysis. We would also like to mention
that there are applications which are specifically designed to
support data wrangling (e.g., Trifacta E]), which we did not
include in the study.

B. Future Work

We believe that future research in visual analytics should
continue to support data scientists in their workflows. A
better integration of visual analytics into current workflows
is important to foster collaboration with the data science
community. Interview studies with data scientists have shown
that they are very interested in exploring and integrating more
advanced visualization techniques into their workflows. By
providing interfaces to scripting languages or a more flexible
access to visualization (e.g., by starting it from the command
line) it would be possible to address a larger group of potential
end users.

Dhttps://www.trifacta.com/de/

The study also pointed out interesting directions for future
work to investigate the already developed interfaces between
visualization and analytics. Visual analytics is a constant ex-
change between visualization and analysis, which is controlled
by the users. By examining the interfaces used today, we
will get a better idea of how the information flow should be
implemented and which tasks are mainly needed by the users.

ACKNOWLEDGMENTS

VRVis is funded by BMK, BMDW, Styria, SFG and Vienna
Business Agency in the scope of COMET - Competence Cen-
ters for Excellent Technologies (854174) which is managed
by FFG.

REFERENCES

[1] W. Cui, “Visual Analytics: A Comprehensive Overview,” IEEE Access,
vol. 7, pp. 8155581573, 2019.

[2] R. de Amicis, R. Stojanovic, and G. Conti, GeoSpatial Visual Analytics:
Geographical Information Processing and Visual Analytics for Environ-
mental Security. Springer Netherlands, 2009.

[3] N. Kamal, S. Wiebe, J. D. Engbers, and M. D. Hill, “Big Data and
Visual Analytics in Health and Medicine: From Pipe Dream to Reality,”
Journal of Health & Medical Informatics, vol. 5, no. 5, 2014.

[4] A. Slingsby and E. E. van Loon, “Exploratory Visual Analysis for
Animal Movement Ecology,” Computer Graphics Forum, vol. 35, no. 3,
pp. 471-480, 2016.

[5] F. Zhou, X. Lin, C. Liu, Z. Ying, P. Xu, L. Ren, T. Xue, and
L. Ren, “A survey of visualization for smart manufacturing,” Journal
of Visualization, vol. 22, p. 419-435, 2019.

[6] C. Hayashi, “What is Data Science? Fundamental Concepts and a
Heuristic Example,” in Data Science, Classification, and Related Meth-
ods. Springer Japan, 1998, pp. 40-51.

[7] M. A. Parsons, @Qystein Godgy, E. LeDrew, T. F. de Bruin, B. Danis,
S. Tomlinson, and D. Carlson, “A conceptual framework for managing
very diverse data for complex, interdisciplinary science,” Journal of
Information Science, vol. 37, no. 6, pp. 555-569, 2011.

[8] J. Schmidt, “Usage of Visualization Techniques in Data Science Work-
flows,” in Proceedings of the 15th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Appli-
cations, ser. VISIGRAPP °20. Valletta, Malta: SciTePress, Feb. 27-29
2020, pp. 309-316.

[91 R. Desai, “Top 10 Python Libraries for
Data Science,” https://towardsdatascience.com/
top- 10-python-libraries- for-data-science-cd82294ec266, Dec. 2019,
[accessed 2020-08-19].

[10] B. Hayes, “Business Broadway: Programming Lan-
guages Most Used and Recommended by Data Sci-

entists,” https://businessoverbroadway.com/2019/01/13/
programming-languages-most-used-and-recommended- by-data-scientists/,
01 2019, [accessed 2020-08-21].
[11] J. Liu, N. Boukhelifa, and J. R. Eagan, “Understanding the Role
of Alternatives in Data Analysis Practices,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 1, pp. 66-76, 2019.
S. Alspaugh, N. Zokaei, A. Liu, C. Jin, and M. A. Hearst, “Futzing and
Moseying: Interviews with Professional Data Analysts on Exploration
Practices,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 22-31, 2019.
P. Barlas, I. Lanning, and C. Heavey, “A survey of open source
data science tools,” International Journal of Intelligent Computing and
Cybernetics, vol. 8, pp. 232-261, 2015.
scikit-learn developers, “Clustering,” |https://scikit-learn.org/stable/
modules/clustering.html, 2020, [accessed 2020-07-13].
[15] Wikipedia, “Standalone software,” https://en.wikipedia.org/wiki/
Standalone_software, May 2020, [accessed 2020-08-01].
D. Barron, The World of Scripting Languages. John Wiley & Sons,
2000.
[17] Wikipedia, “Software interfaces,” https://en.wikipedia.org/wiki/
Interface_(computing), May 2020, [accessed 2020-08-01].

[12]

[13]

[14]

[16]

https://www.trifacta.com/de/
https://towardsdatascience.com/top-10-python-libraries-for-data-science-cd82294ec266
https://towardsdatascience.com/top-10-python-libraries-for-data-science-cd82294ec266
https://businessoverbroadway.com/2019/01/13/programming-languages-most-used-and-recommended-by-data-scientists/
https://businessoverbroadway.com/2019/01/13/programming-languages-most-used-and-recommended-by-data-scientists/
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://en.wikipedia.org/wiki/Standalone_software
https://en.wikipedia.org/wiki/Standalone_software
https://en.wikipedia.org/wiki/Interface_(computing)
https://en.wikipedia.org/wiki/Interface_(computing)

[18] D. Keim, G. Andrienko, J.-D. Fekete, C. Gorg, J. Kohlhammer, and
G. Melancon, Visual Analytics: Definition, Process, and Challenges.
Springer-Verlag, 2008, pp. 154—-175.

[19] L. Zhang, A. Stoffel, M. Behrisch, S. Mittelstadt, T. Schreck, R. Pompl,
S. H. Weber, H. Last, and D. Keim, “Visual analytics for the big data
era — A comparative review of state-of-the-art commercial systems,” in
In Proceedings of the IEEE Conference on Visual Analytics Science and
Technology, ser. VAST 12, Seattle, WA, USA, Oct 14-19 2012, pp.
173-182.

[20] M. Behrisch, D. Streeb, F. Stoffel, D. Seebacher, B. Matejek, S. H.
Weber, S. Mittelstaedt, H. Pfister, and D. Keim, “Commercial Visual
Analytics Systems-Advances in the Big Data Analytics Field,” IEEE
Transactions on Visualization and Computer Graphics, vol. 25, 2018.

[21] L. D. Sciences, “Gartner Magic Quadrant for Analytics and
Business Intelligence Platforms 2020,” https://looker.com/learn/
gartner-magic-quadrant, Feb. 2020, [Accessed 2020-07-09].

[22] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise Data
Analysis and Visualization: An Interview Study,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 12, pp. 2917-2926,
2012.

[23] A. Kirk, “The Chartmaker Directory,” http://chartmaker.visualisingdata.
com/, 2020, [accessed 2020-08-13].

[24] Y. Holtz and C. Healy, “The Chartmaker Directory - Data Story,” https:
/Iwww.data-to-viz.com/#story, 2017, [accessed 2020-07-25].

[25] A. Batch and N. Elmgqvist, “The Interactive Visualization Gap in Initial
Exploratory Data Analysis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 24, no. 1, pp. 278-287, Jan 2018.

[26] J. Kehrer, R. N. Boubela, P. Filzmoser, and H. Piringer, “A generic model
for the integration of interactive visualization and statistical computing
using R,” in Proceedings of the 2012 IEEE Conference on Visual
Analytics Science and Technology (Posters), ser. VAST 12, Seattle, WA,
USA, Oct. 14-19 2012, pp. 233-234.

[27] J.-D. Fekete, “Software and Hardware Infrastructures for Visual Analyt-
ics,” Computer, vol. 43, no. 8, pp. 22-29, 2013.

[28] E.FE. Anderson, “A Classification of Scripting Systems for Entertainment
and Serious Computer Games,” in Proceedings of the Third International
Conference on Games and Virtual Worlds for Serious Applications, ser.
VS-GAMES ’11, Athens, Greece, May 4-6 2011, pp. 47-54.

[29] T. Miihlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit,
“Opening the Black Box: Strategies for Increased User Involvement in
Existing Algorithm Implementations,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 20, no. 12, pp. 1643-1652, 2014.

[30] nature, “Julia: come for the syntax, stay for the speed,” https://www.
nature.com/articles/d41586-019-02310-3, July 2019, [Accessed 2020-
08-23].

[31] M. P. BI, “Scalable Analytics with Microsoft Power BI and
MATLAB Production Server,” https://www.mathworks.com/products/
reference-architectures/power-bi.html, 2020, [Accessed 2020-08-01].

[32] B. Beran, ‘“Leverage the power of Python in Tableau with

TabPy,” https://www.tableau.com/de-de/about/blog/2016/11/
leverage-power-python-tableau-tabpy-62077-0, Nov. 2020, [Accessed
2020-08-20].

[33] B. Hayes, “Business Over Broadway: Programming
Languages Most Used and Recommended by Data
Scientists,” https://businessoverbroadway.com/2019/01/13/

programming-languages-most-used-and-recommended- by-data-scientists/,
Jan. 2019, [accessed 2020-10-28].

https://looker.com/learn/gartner-magic-quadrant
https://looker.com/learn/gartner-magic-quadrant
http://chartmaker.visualisingdata.com/
http://chartmaker.visualisingdata.com/
https://www.data-to-viz.com/#story
https://www.data-to-viz.com/#story
https://www.nature.com/articles/d41586-019-02310-3
https://www.nature.com/articles/d41586-019-02310-3
https://www.mathworks.com/products/reference-architectures/power-bi.html
https://www.mathworks.com/products/reference-architectures/power-bi.html
https://www.tableau.com/de-de/about/blog/2016/11/leverage-power-python-tableau-tabpy-62077-0
https://www.tableau.com/de-de/about/blog/2016/11/leverage-power-python-tableau-tabpy-62077-0
https://businessoverbroadway.com/2019/01/13/programming-languages-most-used-and-recommended-by-data-scientists/
https://businessoverbroadway.com/2019/01/13/programming-languages-most-used-and-recommended-by-data-scientists/

	Introduction
	Definitions
	Related Work
	Scripting Interfaces in Visual Analytics
	Available Interfaces
	Interfaces Classification

	Relation to Data Science
	Conclusion and Future Work
	Conclusion
	Future Work

	References

